首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanocrystalline TiO2 thin films composed of densely packed grains were deposited onto indium-doped tin oxide (ITO)-coated glass substrates at room temperature using a chemical bath deposition technique. A layer-by-layer (LbL) process was utilized to obtain a 1.418-microm-thick TiO2/ZnO structure. The TiO2 surface was super-hydrophilic, but its hydrophilicity decreased considerably after ZnO deposition. Other TiO2/ZnO films were studied to assess their suitability as photoelectrodes in dye-sensitized solar cells (DSSCs).  相似文献   

2.
This paper demonstrates the ability to control the location of polymer deposition onto porous substrates using vapor phase polymerization in combination with metal salt inhibitors. Functional polymers such as hydrophobic poly(1H,1H,2H,2H-perfluorodecyl acrylate), click-active poly(pentafluorophenyl methacrylate), and light-responsive poly(ortho-nitrobenzyl methacrylate) were patterned onto porous hydrophilic substrates using metal salts. A combinatorial screening approach was used to determine the effects of different transition metal salts and reaction parameters on the patterning process. It was found that CuCl(2) and Cu(NO(3))(2) were effective at uniformly inhibiting the deposition of all three polymers through the depth of the porous substrate and along the entire cross section. This study offers a new and convenient method to selectively deposit a wide variety of functional polymers onto porous materials and will enable the production of next-generation multifunctional paper-based microfluidic devices, polymeric photonic crystals, and filtration membranes.  相似文献   

3.
We report a facile means to achieve planarization of nonflat or patterned surfaces by utilizing the layer-by-layer (LbL) assembly of highly diffusive polyelectrolytes. The polyelectrolyte pair of linear polyethylenimine (LPEI) and poly(acrylic acid) (PAA) is known to maintain intrinsic diffusive mobility atop or even inside ionically complexed films prepared by LbL deposition. Under highly hydrated and swollen conditions during the sequential film buildup process, the LbL-assembled film of LPEI/PAA undergoes a topological self-deformation for minimizing surface area to satisfy the minimum-energy state of the surface, which eventually induces surface planarization along with spontaneous filling of surface textures or nonflat structures. This result is clearly different from other cases of applying nondiffusive polyelectrolytes onto patterned surfaces or confined structures, wherein surface roughening or incomplete filling is developed with the LbL assembly. Therefore, the approach proposed in this study can readily allow for surface planarization with the deposition of a relatively thin layer of polyelectrolyte multilayers. In addition, this strategy of planarization was extended to the surface modification of an indium tin oxide (ITO) substrate, where surface smoothing and enhanced optical transmittance were obtained without sacrificing the electronic conductivity. Furthermore, we investigated the potential applicability of surface-treated ITO substrates as photoelectrodes of dye-sensitized solar cells prepared at room temperature. As a result, an enhanced photoconversion efficiency and improved device characteristics were obtained because of the synergistic role of polyelectrolyte deposition in improving the optical properties and acting as a blocking layer to prevent electron recombination with the electrolytes.  相似文献   

4.
In this paper, we investigate poly‐crystal indium tin oxide (ITO) film produced by a multi‐step ion beam treatment on polyethylene terephthalate (PET) at room temperature. In the process of ITO film deposition by a sputtering method, we perform an ion beam treatment after some quantity of ITO deposition is complete, and this process is carried out repeatedly until the required film thickness is achieved. X‐ray diffraction indicates that the ITO film deposited by our multi‐step ion beam treatment has an almost poly‐crystal structure with a morsel of amorphous structure in the PET layers. As a supplementary measurement, a contact angle method shows that the poly‐crystal structure is due to a surface charge effect. Consequently, the electrical conductivity of the ITO film (resistivity measurement error bar < 0.7%) with the multi‐step ion beam treatment is eight times higher than that of single‐treated ITO film, due to this poly‐crystal structure. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Electrostatic self-organization of robust porphyrin-polyoxometalate films   总被引:1,自引:0,他引:1  
Strategies to create thin films using layer-by-layer methods use oppositely charged polymeric polyelectrolytes for both or at least one component to beneficially exploit multitopic electrostatic interactions between the deposited layers with opposite charges. In contrast, the electrostatic deposition of tetracationic 5,10,15,20-tetrakis(1'-methyl-4'-pyridinio)porphyrin tetra(p-toluenesulfonate) (TMPyP(4+)) with tetraanionic polyoxometalates such as EuPW(11)O(39)(4-) or SiW(12)O(40)(4-) onto charged substrates, such as mica, or polar substrates, such as glass and indium-tin oxide (ITO), demonstrates that the use of polymeric components is not a priori necessary. The use of molecules in sequential dipping approaches requires a careful balance in the interaction energies between the oppositely charged molecules, as demonstrated by the observation that a tetraanionic porphyrin such as 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin does not form layers with TMPyP(4+). In the present case, these systems require several rounds of dipping to obtain films of uniform coverage and durability. The thin films deposited onto glass, quartz, ITO, and mica are surprisingly robust, since they are not removed by sonication in either organic solvents or 100 mM NaCl.  相似文献   

6.
Densely packed exfoliated nanosheet films such as Ti0.91O2, Ti0.8M0.2O2 (M = Co, Ni), Ti0.6Fe0.4O2, and Ca2Nb3O10 on solid substrates were prepared by the LB transfer method without any amphiphilic additives at the air-water interface. Nanosheet crystallites covered nearly 95% on the solid surface with minimum overlapping of nanosheets. The LB transfer method of the Ti0.91O2 nanosheet monolayer film is applicable for not only hydrophilic substrates such as quartz, silicon, indium-tin oxide (ITO), and glass but also the hydrophobic Au surface. On the basis of these points, the LB transfer method has advantages compared to the alternating layer-by-layer method, which makes use of oppositely charged polyelectrolytes such as poly(ethylenimine) (PEI). Adsorption of hydrophobic Ti0.91O2 nanosheets at the air-water interface is responsible for this LB transfer deposition method. The addition of tetrabutylammonium bromide into the subphase assisted the adsorption, causing an increase in the adsorbed amount of Ti0.91O2 nanosheets at the air-water interface.  相似文献   

7.
ITO上电沉积Pd的成核机理及电催化性质   总被引:1,自引:0,他引:1  
采用循环伏安技术和计时电流技术, 研究了ITO上电沉积Pd的过程, 发现Pd在ITO表面的电沉积是过电位成核且为不可逆的扩散控制过程; 根据Cottrell方程计算得到[PdCl4]2-的扩散系数为2.19×10-5 cm2/s; 根据Scharifker的理论模型, 归一化处理电流-时间曲线, 与理论成核曲线对照, 判断Pd 的成核机理. 通过场发射扫描电子显微镜(FESEM)对Pd 的形貌进行分析, 讨论了沉积电位和沉积时间对Pd纳米粒子形貌的影响. 用X射线粉末衍射(XRD)对Pd纳米粒子进行结构分析, 并在0.5 mol/L H2SO4溶液中研究了其电化学性质及在碱性条件下乙醇分子的电催化性质.  相似文献   

8.
In this study, we synthesized polynorbornene (PNB) dicarboximides substituted by monochlorophenyl group (PMCPhNDI) and dichlorophenyl group (PDCPhNDI) via ring‐opening polymerization using a ruthenium catalyst and investigated their thermal, mechanical, and optical properties. We also discussed the performance and application of the functionalized PNB dicarboximide films as flexible substrates for organic light‐emitting devices (OLEDs). The polymer films exhibited good optical transparency with an average transmittance of around 97% in the visible light region and good thermal stability with a 5% degradation temperature of >440°C. The polymers were applied for flexible displays, which were coated on indium tin oxide (ITO) thin films using a radio‐frequency planar magnetron sputtering system with changing the deposition substrate temperatures. A flexible OLED that was fabricated on the ITO‐grown polymer substrates exhibited a performance as comparable to the corresponding ITO‐grown glass substrates. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
We immobilized a hemicyanine dye, Di-8-ANEPPS, in ordered thin films of an organic matrix, dihexadecyl phosphate (DHP), and we transferred the mixed monolayers onto solid support by the Langmuir-Blodgett technique. We used gold and quartz slides and indium tin oxide (ITO) evaporated on glass slides as substrates. The multilayers formation was confirmed by ellipsometric and contact angle measurements. The optical response of the nanostructures was investigated collecting UV-Vis absorption and fluorescence emission intensity profiles.  相似文献   

10.
We use conductive-probe atomic force microscopy (CP-AFM) to characterize and image hybrid electrode structures comprising mesoporous manganese oxide (MnO2) ambigel nanoarchitectures coated with an ultrathin (<10 nm) electrodeposited layer of poly(o-phenylenediamine), PPD. Native MnO2 ambigel films, supported on indium tin oxide (ITO) substrates, exhibit spatially uniform conductivity that correlates well with the topography of the MnO2 film, confirming that the nanoscopic oxide network is effectively wired to the underlying ITO substrate. Following the self-limiting electrodeposition of the PPD coating onto the high-surface-area (>200 m2 g(-1)) MnO2 ambigel, the resulting hybrid structures display an approximately 20-fold reduction in conductivity, as determined from CP-AFM measurements. The CP-AFM imaging studies confirm that the ultrathin, insulating PPD layer conformally and homogeneously coats the conductive nanoarchitecture. CP-AFM imaging of PPD-MnO2 hybrid electrodes following electrochemical cycling in an aqueous acid electrolyte reveals that the ultrathin PPD coating serves as an effective barrier to the electrolyte, protecting the underlying MnO2 nanoarchitecture from electrochemical dissolution.  相似文献   

11.
A simple and effective way for TiO(2) to be deposited on silicon or indium tin oxide (ITO) substrates has been achieved by using a poly(styrene-block-4-vinyl pyridine) (PS-b-P4VP) block copolymer template. In particular, a mechanism for the formation of TiO(2) within the P4VP phase was developed. Within this model, the TiO(2) deposition occurs by swelling of the protonated P4VP segments followed by transport of Ti precursor, probably protonated Ti(OH)(4) given the low pH conditions used, into the swollen P4VP followed by condensation into TiO(2) during the heating/plasma etch processes. TiO(2) nanostructure morphology is affected by pH and deposition temperatures, because these parameters affect the degree of protonation of P4VP segments and diffusion of the titanium(IV) bis(ammonium lactato)dihydroxide (TALH) precursor into the film. A pH range of 2.1-2.5 for silicon substrates and pH = 2.1 for ITO substrates gave the narrower TiO(2) nanostructures distributions, and deposition at 70 °C gave TiO(2) nanostructures with more regular arrangements and smoother surface than those deposited at room temperature. The use of 1,4-diiodobutane as a P4VP cross-linking compound is demonstrated to be a critical parameter for maintaining good cylindrical surface morphology for both the block copolymer template and the TiO(2) nanostructures.  相似文献   

12.
Novel polynorbornene (PNB)‐polyimide (PI) copolymers were synthesized based on poly(N‐phenyl‐exo‐norbornene‐5,6‐dicarboximide) (PPhNI) and chlorinated PI (BPDA/TCDB). Polynorbornene copolymers (PNCs) with diverse compositions of anhydride were synthesized via ring opening metathesis polymerization (ROMP) of N‐phenyl‐exo‐norbornene‐5,6‐dicarboximide (PhNI) and exo‐7‐oxanorbornene‐5,6‐dicarboxylic anhydride(exo‐NA), followed by copolymerization through a reaction with aromatic dianhydride (3,3′,4,4′‐biphenyltetra‐carboxylic dianhydride, BPDA) and tetrachlorinated diamine (2,2′,5,5′‐tetrachlorobenzidine, TCDB). The copolymer (PNIC) films exhibited good optical transparency with a transmittance of around 70% at 400 nm and a good thermal stability with a glass transition temperature at 276–300 °C. These flexible films also resisted most organic solvents and chemicals, such as methanol, acetone, tetrahydrofuran, N‐methylpyrrolidone, ethyl acetate, hydrochloric acid, sodium hydroxide, and hydrogen peroxide, etc. Indium tin oxide (ITO) coated thin films were prepared at various substrate deposition temperatures with a radio frequency (r.f.) planar magnetron sputtering system. The ITO thin films that were deposited onto the PNIC copolymer substrates had good electrical and optical properties. An organic light‐emitting device (OLED) was fabricated using the PNIC copolymer substrate with a structure of PNIC08/ ITO (anode)/hole‐transporting layer (HTL)/emitting & electron‐transporting layer (EM&ETL)/aluminum (cathode). The flexible OLED fabricated on the ITO‐grown PNIC substrate exhibited a performance that was comparable to corresponding ITO‐grown glass substrates. Therefore, the ITO‐grown PNIC substrate could possibly be a promising candidate as a substrate for flexible displays. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1806–1814, 2010  相似文献   

13.
The facile deposition of para-substituted aryl films onto indium-tin oxide (ITO) electrodes by the electrochemical reduction of aryl diazonium salts in acetonitrile is reported. For the deposition conditions used in this report, the aryl film thicknesses are on the order of 1-6 nm, suggesting a multilayer structure. Regardless of the functional group on the aryl diazonium cation, (NO(2), CO(2)H, or fluorene) the electrodeposition behavior onto ITO electrodes is similar to that seen on other electrode materials. XPS and UV-vis data support the introduction of organic functional surface groups to ITO. The blocking behavior of the aryl films on ITO toward the Ru(NH(3))(6)(3+/2+) redox couple is in agreement with electron transfer through conjugated organic layers. The facile preparation of patterned aryl films with regular-spaced 700 nm voids on ITO is also described. Atomic force microscopy and scanning surface potential microscopy on patterned NO(2) aryl films are used to assess the molecular structure and orientation. A 100 mV decrease in the contact potential over NO(2) aryl films relative to bare ITO suggests that the aryl films are loosely structured as deposited with the NO(2) groups oriented at a small angle away from the ITO surface.  相似文献   

14.
This paper presents a novel surface engineering approach that combines photochemical grafting and surface-initiated atom transfer radical polymerization (SI-ATRP) to attach zwitterionic polymer brushes onto indium tin oxide (ITO) substrates. The photochemically grafted hydroxyl-terminated organic layer serves as an excellent platform for initiator attachment, and the zwitterionic polymer generated via subsequent SI-ATRP exhibits very good antifouling properties. Patterned polymer coatings can be obtained when the surface with covalently attached initiator was subjected to photomasked UV-irradiation, in which the C-Br bond that is present in the initiator was broken upon exposure to UV light. A further, highly versatile top-functionalization of the zwitterionic polymer brush was achieved by a strain-promoted alkyne-azide cycloaddition, without compromising its antifouling property. The attached bioligand (here: biotin) enables the specific immobilization of target proteins in a spatially confined fashion, pointing to future applications of this approach in the design of micropatterned sensing platforms on ITO substrates.  相似文献   

15.
It was found that [60]fullerene encapsulated in p-sulfonatocalix[8]arene and single-walled carbon nanotubes (SWNTs) solubilized by sodium dodecylsulfate can be readily deposited on the ITO electrode by electrochemical oxidative polymerization of ethylenedioxythiophene (EDOT) without chemical modification of these carbon clusters. The driving force for the deposition is an electrostatic interaction between the anionic complexes and the cationic charges of poly(EDOT) formed in the oxidative polymerization process. The surface morphology was thoroughly characterized by scanning electron micrograph: the [60]fullerene/poly(EDOT) film is covered by nano-particles with 20-100 nm diameters whereas the SWNTs/poly(EDOT) film is covered by nanorods with several microm length and ca. 100 nm diameter. The results indicate that the anionic complexes act as nuclei for the polymer growth in the oxidation polymerization. Interestingly, when these modified ITO electrodes were photoirradiated, the appearance of a photocurrent wave was observed. The action spectra showed that the photoexcited energy of [60]fullerene or SWNTs is efficiently collected by the electroconductive poly(EDOT) film and transferred to the ITO electrode.  相似文献   

16.
17.
本文采用一步恒电位沉积法在铟锡氧化物(ITO)基底上制备CuInSe2薄膜,研究了沉积过程中不同的离子浓度配比及pH值对CuInSe2膜结构性能的影响。利用扫描电子显微镜(SEM)、X射线能谱仪(EDS)及X射线衍射仪(XRD)研究了薄膜材料的结构性能,结果发现pH值对薄膜的化学成份、表面形貌、晶格结构都有显著影响,通过控制合适的浓度及酸度分别制备了高质量富铟与富铜薄膜。利用表面光电压(SPS)技术分别对富铟与富铜薄膜的光电分离特性进行了研究,结果发现富铟薄膜具有很强的光电响应;而富铜薄膜由于Cu-Se相的存在,在薄膜中形成了新的界面,电子-空穴对在其界面处因捕获而发生复合,从而导致其光电响应的强烈降低。所得到的结果为提高铜铟硒薄膜的光电效率提供了有价值的新思路。  相似文献   

18.
《Electroanalysis》2004,16(19):1628-1631
In this work, we report a simple, rapid and sensitive approach for the electrochemical gold nanoparticle‐based DNA detection with an electrocatalytic silver deposition process. The catalytic and preferential silver electrodeposition on gold nanoparticle surfaces using an indium tin oxide (ITO) electrode at certain potentials, without any chemical pretreatments of the electrode, is demonstrated. More importantly, the application of this methodology for hybridization transduction is explored. The ITO electrode surface is first coated with an electroconductive polymer, poly(2‐aminobenzoic acid), to enable the chemical attachment of avidin molecules for the subsequent probe immobilization. The hybridization of the target with the probe in turn permits the binding of the gold nanoparticle labels to the transducer surface via biotin‐streptavidin interaction. The amount of bound gold labels, which is proportional to the amount of the target, is determined by the electrocatalytic silver deposition process. A significant improvement of the signal‐to‐background ratio is achieved with this scheme compared to the conventional chemical hydroquinone‐based silver deposition process.  相似文献   

19.
It was found that single-walled carbon nanotubes (SWNTs) solubilized into water by complexation with DNA (salmon testes) can be readily deposited on the ITO electrode by electrochemical oxidative polymerization of ethylenedioxythiophene (EDOT). The driving force for this novel deposition is an electrostatic interaction between the anionic charges of wrapping DNA and the cationic charges of poly(EDOT) formed in the oxidative polymerization process. The presence of poly(EDOT), SWNTs and DNA in the composite was confirmed by measurements of UV-Vis, IR, resonance Raman spectra, cyclic voltammetry (CV) and confocal laser scanning microscopy (CLSM). The composite adsorbed a DNA intercalator (ethidium bromide: EB) very efficiently, which is regarded to be further evidence for inclusion of DNA. The surface morphology, characterized by CLSM, SEM and AFM, featured the network structure consisting of 0.5-ca. 10 microm nanorods. Very interestingly, we found that photoexcitation of EB bound to the DNA generates the photocurrent, indicating that the excited energy of EB is injected into SWNTs, which is collected by the electroconductive poly(EDOT) film on the ITO electrode. We believe, therefore, that the present system is a very convenient method to explore new materials related to redox and photochemical functions.  相似文献   

20.
In this work, we report a gas-phase polymerization approach to create end-grafted vinyl based polymer films on silicon oxide based substrates. The "surface-initiated vapor deposition polymerization" (SI-VDP) of vaporized vinyl monomers, via the nitroxide-mediated free radical polymerization mechanism, was developed to fabricate various homo- and block copolymer brushes from surface-bound initiators, 1-(4'-oxa-2'-phenyl-12'-trimethoxysilyldodecyloxy)-2,2,6,6-tetra-methylpiperidine ("TEMPO"). The resulting polymer thin films were characterized by the Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, ellipsometry, and contact angle goniometry, respectively, to identify the surface composition, film thickness, surface coverage, and water contact angles. Through the SI-VDP, end-grafted polymer films of polystyrene (PSt), poly(acrylic acid) (PAAc), poly(N-(2-hydroxypropyl) methacrylamide) (PHPMA), and poly(N-isopropylacrylamide) (PNIPAAm) with 10-200 nm thicknesses were fabricated. Furthermore, the block copolymer films of PAAc (1st block)-b-PSt (2nd block), PSt (1st block)-b-PAAc (2nd block), and a triblock copolymer film of PAAc (1st)-b-PSt (2nd)-b-PHPMA (3rd), were also fabricated, suggesting the "renewability" of the TEMPO-initiated polymerization in the SI-VDP scheme. It is also noticed that the SI-VDP is more efficient than the conventional solution phase polymerization in producing functional polymer brushes such as PNIPAAm, PAAc, or PAAc-b-PSt end-grafted films. In summary, our studies have shown clear advantages of the SI-VDP setup for the nitroxide-mediated polymerization scheme in controlling synthesis of end-grafted homo- and copolymer thin films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号