共查询到20条相似文献,搜索用时 31 毫秒
1.
Amendola V Fabbrizzi L Mosca L Schmidtchen FP 《Chemistry (Weinheim an der Bergstrasse, Germany)》2011,17(21):5972-5981
In this work, we compare the anion-binding capabilities of receptors 1-5, characterized by similar structures, but possessing different hydrogen-bond-donor moieties (urea, squaramide, and sulfonamide). The presence of chromophoric substituents on the receptor's skeleton allowed the determination of association constants by performing UV/Vis titrations with the investigated anions on solutions of the receptors in pure acetonitrile. Additional quantitative studies of the anion-binding properties of receptors 1-5 were performed by isothermal titration calorimetry (ITC). The experimental results indicated that 1 and 2 formed 1:1 hydrogen-bonded complexes with most of the anions investigated. In the case of receptors 3-5, the formation of the 1:1 adduct was observed only with anions of low basicity (i.e., chloride, bromide, iodide, and hydrogen sulfate). With more basic anions (i.e., acetate and dihydrogen phosphate), both spectrophotometric and ITC titrations accounted for the deprotonation of the sulfonamide group, involving the formation of the conjugated base of the receptor. 相似文献
2.
Yoon DW Gross DE Lynch VM Sessler JL Hay BP Lee CH 《Angewandte Chemie (International ed. in English)》2008,47(27):5038-5042
3.
Sessler JL An D Cho WS Lynch V Marquez M 《Chemistry (Weinheim an der Bergstrasse, Germany)》2005,11(7):2001-2011
A series of novel calixpyrrole-like macrocycles, calix[n]bis(pyrrol-2-yl)benzene (calix[n]BPBs, n=2-4) 9 a-11 a, have been synthesized by means of the TFA-catalyzed condensation reaction of bis(pyrrol-2-yl)benzene 8 a with acetone. Calix[2]BPB 9 a represents an expanded version of calix[4]pyrrole in which two of the four meso bridges are replaced by benzene rings. By contrast, systems 10 a and 11 a, which bear great considerable to calixbipyrroles 2 and 3, represent higher homologues of the basic calix[n]BPB motif. Solution-phase anion binding studies, carried out by means of (1)H NMR spectroscopic titrations in [D2]dichloromethane and isothermal titration calorimetry (ITC) in 1,2-dichloroethane, reveal that 9 a binds typical small anions with substantially higher affinities than 1, even though the same number of hydrogen bonding donor groups are found in both compounds. The basic building block for 9 a, benzene dipyrrole 8 a, also displays a higher affinity for anions than the building block for 1, dimethyldipyrromethane 16. Structural studies, carried out by single-crystal X-ray diffraction analyses, are consistent with the solution-phase results and reveal that 9 a is able to stabilize complexes with chloride and nitrate in the solid state. Structures of the PF6- and NO3- complexes of 10 a were also solved as were those of the acetone adduct of 9 a and the ethyl acetate adduct of 11 a. 相似文献
4.
Esteban-Gómez D Platas-Iglesias C de Blas A Fabbrizzi L Rodríguez-Blas T 《Chemistry (Weinheim an der Bergstrasse, Germany)》2008,14(19):5829-5838
In this paper, we report two macrobicyclic receptors containing pyridine head units derived from 1,10-diaza-15-crown[5] (L1) or 4,13-diaza-18-crown[6] (L2) that can be protonated in MeCN and used for anion recognition. The interaction of these protonated lateral macrobicycles with different anions has been investigated by means of spectrophotometric titrations in MeCN. The association constants for the complexes of halide anions with the protonated macrobicycles follow the sequences Cl(-)>Br(-)>I(-)>F(-) (L1) and Cl(-)>F(-)>I(-)>Br(-) (L2), whereby an increase of more than two logarithmic units is observed from F(-) to Cl(-) for the binding constants of the receptor derived from L1. The association constants also indicate an important degree of selectivity of these macrobicyclic receptors for Cl(-) over Br(-) or I(-). The X-ray crystal structure analyses of the chloride and bromide complexes confirms the formation of the envisaged supramolecular complexes. Moreover, the binding constants indicate that these receptors present a high sulfate-to-nitrate binding selectivity. The stability trend observed for the recognition of halide anions by the macrobicycles presented herein as well as the sulfate-to-nitrate binding selectivity have been rationalised by means of DFT calculations at the B3LYP/LanL2DZ level. These studies indicate that the especially high binding selectivity for Cl(-) is the result of the optimum fit between the protonated macrobicyclic cavity and the size of the anion, whereas the sulfate-to-nitrate selectivity results from shape complementarity between the hydrogen-binding acceptor sites on sulfate and the hydrogen-bond donors of the macrobicycle. 相似文献
5.
Amide-based ligands for anion coordination 总被引:1,自引:0,他引:1
Kang SO Begum RA Bowman-James K 《Angewandte Chemie (International ed. in English)》2006,45(47):7882-7894
Anion recognition is an active area of research in supramolecular chemistry. The rapidly increasing amount of structural data now allows anion coordination chemistry to be formalized in terms of coordination numbers and geometries based on hydrogen-bonding interactions between the host (ligand) and the guest (anion). This Minireview targets just one class of anion receptors, namely, amide-based ligands. The structural data for a series of five anion shapes are compiled according to coordination number, and distinct commonalities are observed within a given anion topology. The results also indicate a number of similarities between the coordination of anions and transition-metal ions. 相似文献
6.
7.
8.
Monika Mazik Prof. Dr. Andrè Hartmann Dipl.‐Chem. Peter G. Jones Prof. Dr. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2009,15(36):9147-9159
1H NMR spectroscopic titrations in competitive and non‐competitive media, as well as binding studies in two‐phase systems, such as phase transfer of sugars from aqueous into organic solvents and dissolution of solid carbohydrates in apolar media revealed both highly effective recognition of neutral carbohydrates and interesting binding preferences of an acyclic phenanthroline‐based receptor 1 . Compared to the previously described acyclic receptors, compound 1 displays significantly higher binding affinities, the rare capability to extract sugars from water into non‐polar organic solutions and α‐ versus β‐anomer binding preference in the recognition of glycosides, which differs from those observed for other receptor systems. X‐ray crystallographic investigations revealed the presence of water molecules in the binding pocket of 1 that are engaged in the formation of hydrogen‐bonding motifs similar to those suggested by molecular modelling for the sugar OH groups in the receptor–sugar complexes. The molecular modelling calculations, synthesis, crystal structure and binding properties of 1 are described and compared with those of the previously described receptors. 相似文献
9.
10.
Neutral imidazole/aminopyridine- and indole/aminopyridine-based receptors, 1 and 2, have been established as highly effective and selective carbohydrate receptors. These receptors effectively recognise neutral carbohydrates through multiple interactions, including neutral hydrogen bonds and CH...pi interactions between the sugar CH groups and the aromatic rings of the receptors. The design of these receptors was inspired by the binding motifs observed in the crystal structures of protein-carbohydrate complexes. The formation of very strong complexes with beta-glucopyranoside 5, beta-maltoside 8, and alpha-maltoside 9 in organic media has been characterised by 1H NMR spectroscopy and confirmed by a second, independent technique, namely fluorescence spectroscopy. The syntheses, molecular-modelling studies, binding properties of the receptors 1 and 2 toward selected mono- and disaccharides as well as comparative binding studies with receptors 3 and 4 are described. 相似文献
11.
We report molecular dynamics potential of mean force (PMF) simulations on the capture of halide anions X(-) (F(-), Cl(-), Br(-)) by a tetrahedral receptor L(4+) built from four quaternary ammonium sites connected by six (CH(2))(n) chains, leading to the formation of inclusion complexes X(-) subset L(4+). Simulations performed with a reaction field correction of the electrostatics and with PME-Ewald summation gave very similar energy profiles. In aqueous solution, an energy barrier of 12-17 kcal mol(-1) was found for the three anions, mainly due to their dehydration when they enter through the largest triangular face of L(4+). In the inclusion complexes, the anion is anchored near the center of the cavity due to the electrostatic field of the four positively charged ammonium sites, shielded from the surrounding water molecules. It was predicted that L(4+) is selective for Cl(-) over Br(-) which both form stable inclusion complexes, while the F(-) complex should dissociate. The comparison of PMFs in aqueous solution and in the gas phase and the energy component analysis demonstrates the importance of solvent on the nature of these complexes and on the complexation energy profiles. The Cl(-)/Br(-) selectivity obtained from the dissociation pathways in water was in good agreement with the results of free energy perturbation simulations based on the "alchemical route" of a thermodynamic cycle, and consistent with experimental observations. 相似文献
12.
Allevi M Bonizzoni M Fabbrizzi L 《Chemistry (Weinheim an der Bergstrasse, Germany)》2007,13(13):3787-3795
The tripodal system 4, in which urea fragments are appended to the three terminal amine nitrogen atoms of a tris(2-aminoethyl)amine (tren) subunit, includes a Cu(II) ion and two anions X-, according to a cascade mechanism through three well defined stepwise equilibria in a DMSO solution. The first anion X- (halide, N3-, NCS-, NO2-, H2PO4-) seeks the Cu(II) centre coordinated by the tren moiety; the second anion X- interacts with the trisurea cavity, but this occurs only if the stronger H-bond acceptors, such as N3- and H2PO4-, are used. Binding of the second X- ion is favoured by the preorganising effect exerted by the metal and disfavoured by the steric and electrostatic repulsions between the anions. Under the appropriate conditions, heterodinuclear complexes of formula [Cu(II)(4)(Cl)(H2PO4)] can be obtained in solution, in which Cl- is bound to the metal centre and H2PO4- interacts with the trisurea compartment. 相似文献
13.
The ability of the Conductor‐like Screening Model for Realistic Solvation (COSMO‐RS) computational method to model hydrogen bond (HB) formation in solution is examined by comparing computational data with experimental data from literature. This is the first study of this kind where mixed solvents are also involved. Hydrogen bond formation is examined between neutral molecules, between acids and their anions, and between various anion receptor molecules and different anions in a number of aprotic solvents. HB formation equilibrium constants, the corresponding Gibbs’ free energies and, when available from the literature, enthalpies were calculated. The supermolecule (SM) approach and the contact probability (CP) approach were used. Both in the case of the SM and CP approach, good to very good correlations between the experiment and computations are found for complexes formed from neutral species, enabling quantitative predictions. When the HB acceptor is an anion, the correlations are poor and in some cases even qualitative predictions fail. 相似文献
14.
15.
Evans NH Serpell CJ White NG Beer PD 《Chemistry (Weinheim an der Bergstrasse, Germany)》2011,17(44):12347-12354
The chloride anion templated synthesis of an electrochemical anion sensory interlocked host system, prepared by the integration of redox-active 1,2,3,4,5-pentaphenylferrocene stopper groups into the structure of a rotaxane capable of binding anionic guests is described. Extensive (1)H NMR and electrochemical titration investigations were used to probe the anion recognition and sensing properties of the rotaxane, compared to the axle and model system components. A characteristic electrochemical response was observed for chloride binding by the rotaxane, which was attributed to the topologically constrained cavity of the interlocked host molecule. 相似文献
16.
Nieto S Pérez J Riera L Riera V Miguel D 《Chemistry (Weinheim an der Bergstrasse, Germany)》2006,12(8):2244-2251
The behavior of the receptors [Re(CO)3(Hdmpz)3]BAr'4 (Hdmpz = 3,5-dimethylpyrazole) (1) and [Re(CO)3(HtBupz)3]BAr'4 (HtBupz = 3(5)-tert-butylpyrazole) (2; Ar' = 3,5-bis(trifluoromethyl)phenyl) toward the anions fluoride, chloride, bromide, iodide, hydrogensulfate, dihydrogenphosphate, nitrate, and perrhenate was studied in CD3CN solution. In most cases, the receptors were stable. Anion exchange was fast, and binding constants were calculated from the NMR titration profiles. The structure of the adduct [Re(CO)3(HtBupz)3] x NO3 (3) was determined by X-ray diffraction. Two pyrazole moieties are hydrogen-bonded to one nitrate oxygen atom, and the third pyrazole moiety is hydrogen-bonded to an oxygen atom of an adjacent nitrate, leading to infinite chains. The structure of the adduct [Re(CO)3(Hdmpz)3]BAr'4acetone (4), also determined by X-ray diffraction, showed a similar interaction of two pyrazole N-H groups with the acetone oxygen atom. F- and H2PO4(-) deprotonate the receptors, and HSO4(-) decomposed 1. The structure of one of the decomposition products (5), determined by X-ray diffraction, is consistent with pyrazole protonation and substitution by sulfate. 相似文献
17.
18.
Amendola V Boiocchi M Fabbrizzi L Mosca L 《Chemistry (Weinheim an der Bergstrasse, Germany)》2008,14(31):9683-9696
The terdentate ligand 3 (LH, 2-formylpyridine 4-thiosemicarbazone) forms with FeII and NiII 2:1 complexes of octahedral geometry of formula [MII(LH)2]2+. X-ray diffraction studies have shown that in both complexes the thiourea moieties of the coordinated thiosemicarbazones are exposed to the outside and are prone to establish hydrogen-bonding bifurcate interactions with oxoanions. However, spectrophotometric studies in CHCl3 solution have shown that only the poorly basic NO3 - ion is able to form authentic hydrogen-bond complexes with thiourea subunits, whereas all the other investigated anions (CH3COO-, NO2 -, F-) induce deprotonation of the N-H fragment. The extreme enhancement of the thiourea acidity is based on the coordinative interaction of the sulphur atom with the metal, which stabilises the thiolate form, and it is much higher than that exerted by any other covalently linked electron-withdrawing substituent, for example, --NO2. 相似文献
19.