首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A glutamine-selective sensor consisting of porcine kidney tissue immobilized at an ammonia gas electrode is utilized. It yields good precision and accuracy over the clinically important range of glutamine concentrations (10-4–10-2 M).  相似文献   

2.
Glutamate, glutamine, and ammonia pool size have been determined in twoS. cerevisiae strains (GOGAT+ and GOGAT-) growing under ammonia excess and limitation at a dilution rate of 0.10/h. The biomass levels and glutamate dehydrogenase NADPH-dependent (NADPH-GDH) activities were also measured for both strains. The strain that lacks GOGAT activity showed lower levels of metabolites under both media and lower levels of biomass under carbon limitation (ammonia excess) compared to the GOGAT+ strain. Under nitrogen limitation, the biomass level was the same for both strains, but GOGAT- changed from rounded to ellipsoidal cells.  相似文献   

3.
4.
The enteral metabolisms of glutamine and citrulline are intertwined because, while glutamine is one of the main fuel sources for the enterocyte, citrulline is one of its products. It has been shown that the administration of 15N‐labeled glutamine results in the incorporation of the 15N label into citrulline, but it is not clear which of the three nitrogen groups of citrulline is actually labeled. To determine the 15N‐enrichment of the positional isomers of glutamine and citrulline, a rapid liquid chromatography/tandem mass spectrometry (LC/MS/MS) method was developed. The amino acids were analyzed as their dansyl derivatives. The product ion resulting from the loss of NH3 from the omega carbon allows for the determination of the enrichment of the ureido (citrulline) or amido groups (glutamine). The protonated pyrrolidine (citrulline) or 5‐oxopyrrolidine (glutamine) product ion contains the 2‐N (amino group) and is used to determine its enrichment. The method described showed no ion suppression and a wide dynamic range ranging from 1.3 picomoles to 2 nanomoles for citrulline. Background samples and standards resulted in enrichments not different from those theoretically expected. The enrichment curves for the different glutamine and citrulline isotopomers were linear (R2 > 0.998) over the range of enrichments studied. The method developed provides an additional insight into the metabolism of glutamine and citrulline tracing the precursor‐product relationship between these two amino acids. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
《Analytical letters》2012,45(15):1345-1357
Abstract

A new type of potentiometric ammonia gas sensor is employed in the preparation of selective bio-electrodes for urea and glutamine. The bio-electrodes are constructed by immobilizing the enzyme urease and intact porcine kidney cells, respectively, at the surface of a disposable ammonium selective polymer membrane electrode-based ammonia gas sensor. The resulting electrodes have favorable response properties when compared to corresponding devices previously assembled with costly commercial gas sensors. Preliminary studies with the urea electrode demonstrate its usefulness for the rapid determination of urea in serum samples.  相似文献   

6.
A specific enzyme electrode procedure is described for the rapid assay of L-phenyl- alanine. The enzyme L-phenylalanine ammonia lyase is used, which cleaves L-phenyl-alanine to ammonia. The ammonia liberated is measured with an air-gap electrode. The procedure is specific; L-tyrosine and other amino acids do not interfere, nor do Na+ or K+ ions. As little as 5 · 10-5 M L-phenylalanine can be determined.  相似文献   

7.
报道了以化学合成和生物转化的方法制备光学纯D-谷氨酰胺. 首先在中试规模上用化学方法合成DL-谷氨酰胺. 即以廉价的DL-谷氨酸为原料, 采用邻苯二甲酰基作为保护基保护L-谷氨酸的α-氨基, 醋酐回流15 min, 使其分子内脱水生成N-邻苯二甲酰-DL-谷氨酸酐, 在常温、常压条件下, 分别与2 mol/L氨水反应生成中间产物N-邻苯二甲酰-DL-谷氨酰胺, 中间产物在室温条件下与0.5 mol/L水合肼反应48 h脱除保护基, 以57%总收率得到DL-谷氨酰胺. 在37 ℃, pH 4.8的条件下, 利用大肠杆菌(E. coli. AS 1.505)脱羧酶将底物浓度30 g/L的DL-谷氨酰胺中L型对映体在8 h内完全转化为4-氨基丁酰胺, 分离得到D-谷氨酰胺.  相似文献   

8.
Coupled Hartree-Fock perturbation theory has been applied to compute the nuclear magnetic shielding tensors for 17O, 14N, and 13C in the molecules of water, ammonia, and methane with four wave functions of increasing accuracy, expanded over basis sets of Gaussian functions. The agreement with the experimental data available for ammonia and methane is very good. Quantities necessary to evaluate the shilding for an arbitrary gauge are also given. The degree of gauge-invariance of the calculated properties is nt satisfactory in the ammonia, while better results are found for water.  相似文献   

9.
Controlling vapour pressure is necessary for the viability of aqueous ammonia solutions in commercial applications such as refrigeration. In this study, Gibbs ensemble Monte Carlo (GEMC) simulations were used to calculate the vapour–liquid equilibrium (VLE) of ammonia–water–MCl mixtures, M = Na or Cs, within the isobaric–isothermal- (NpT-) ensemble. The results indicate that in the presence of alkali metal additives, there is a non-negligible ‘salting-in’ effect for ammonia in the liquid phase. Experimental measurements of the liquid phase concentration of ammonia confirm the GEMC results i.e. the vapour loss rates in systems containing ionic additives is slightly lower. Gibbs ensemble Monte Carlo simulations also indicate that ammonia prefers to solvate aqueous cations as a result of electrostatic interactions. Ab-initio calculations show that the M+–ammonia complex is energetically more stable than the M+–water complex. The difference in the binding free energy Δ(ΔG bind(M+–NH3)?ΔG bind(M+–H2O)) depends on the size of the cation and is highest for the smallest tight cations (e.g. Li+) and lowest for the most polarisable cations (Cs+).  相似文献   

10.
A new type of oxide–salt composite electrolyte, yttrium doped ceria YDC–Ca3(PO4)2–K3PO4, was developed and demonstrated for its promising use for ammonia synthesis. Using this composite electrolyte, ammonia was synthesized from nitrogen and natural gas at atmospheric pressure in the solid-state proton conducting cell reactor, and the optimal condition for ammonia production was determined . The evolved rate of ammonia is up to 6.95×10−9 mol s−1 cm−2.  相似文献   

11.
Ammonia is important in atmospheric chemistry because it neutralises acidic species and increases the pH of cloud droplets. Data on the concentration of free ammonia in the atmosphere are sparse because it is difficult to separate free ammonia from particulate ammonium salt aerosol. A manual method for the determination of free ammonia in air is described based on diffusion/denuder tube separation of ammonia from ammonium salt aerosol. When air is drawn through a tube coated with a selective absorbent (here oxalic acid) separation is achieved because the gaseous species diffuses much more rapidly to the tube wall than the particles. After the sampling period (usually 1–4 h, depending on the free ammonia concentration expected), the sorbed ammonia is washed from the tube and measured potentiometrically with an ammonia probe. The method is tested theoretically and experimentally. The absorption efficiency of the coated tubes is ca. 90%. In samples of room air containing 12–28 μg m?3, the standard deviation is estimated as 1.0 μg m?3. In field use, ammonia contents were in the range 0.53–5.0 μg m?3.  相似文献   

12.
A method for the determination of ammonia in air is described. Air is pumped directly onto the head of a gas-sensitive electrode, the cap of which contains KCl and a low concentration of NH4Cl. For calibration, cleaned air flows over the surface of an ammonia solution. The ammonia concentration of this solution is measured continuously with a second electrode. The mean ammonia concentration in the gas phase is calculated from the ammonia loss in the solution. The detection limit for gaseous ammonia is 5 μg m?3. Effective measures to avoid interferences are described.  相似文献   

13.
Neutron scattering data was recorded from SAPO-34 using the OSIRIS instrument before and after repeated ammonia adsorption at pressures up to 8 bar. Coherent scattering from the zeolite framework provides the neutron powder diffraction pattern and gave evidence for anisotropic contraction on ammonia dosing. Incoherent quasielastic scattering from the hydrogen of the ammonia showed that mobile ammonia was present in the framework. The quasielastic data was fitted to a model where the ammonia was confined within the chabazite cage in the c direction of the crystal lattice, with diffusion solely occurring through the perpendicular 8-membered rings. The calculated diffusion constant reached a maximum of 6.3×10−8 m2 s−1 at 5 bar.  相似文献   

14.
The emission of NOx from coal-fired boilers can be limited by means of the selective catalytic reduction of NOx with ammonia. The amounts of unreacted ammonia downstream should be low to avoid processing and environmental problems. Continuous measurement of the ammonia in the flue gas is needed. The determination of ammonia and flue gas sampling techniques are discussed. Measurements of ammonia in exhausts of a laboratory reactor and of a pilot plant for the selective catalytic reduction of NOx with ammonia are presented. Ammonia was determined by mass spectrometry and chemiluminescence in the gas phase, and by spectrophotometric (Nessler and Berthollet reactions) or potentiometry in aqueous solution, in low (<5 μl l?1) and high (<1000 μl l?1) concentration ranges.  相似文献   

15.
Glutamate dehydrogenase and creatinine deiminase are immobilized by adsorption on wet poly(vinyl chloride) membranes. Creatinine is determined by a sensor consisting of the two membranes placed over an ammonia-sensing electrode. Endogenous ammonia is removed as it passes through the glutamate dehydrogenase layer. Creatinine (1–50 mg dl?1) is converted to ammonia in the inner creatinine deiminase layer and is detected by the ammonia electrode. The assay requires 3 min, the minimum detectable concentration is 1 mg dl?1 at pH 8.5, and the precision is ca. 5%. Endogenous ammonia can be tolerated up to 2 × 10?4 M.  相似文献   

16.
A novel surface acoustic wave-interdigitated array electrode (SAW-IDA) ammonia gas sensor is proposed. A gas-permeable membrane is employed to separate the buffer solution in the inner cell of the gas-sensing probe from the sample solution in the detection cell. The response of the IDA conductive electrodes is based on the impedance change of the buffer solution during ammonia adsorption. Therefore, this gas sensor overcomes the influence of water vapour in the conventional film-coated SAW gas sensor and can be used for the detection of gases in aqueous solutions. The ammonia sensor exhibits a favourable frequency response to 5 × 10−7−1 × 10−3 mol/1 ammonia. The optimal buffer composition and probe parameters have been determined. Dynamic range, response time, selectivity, and temperature drift are discussed. The ammonia sensor was also applied to the determination of serum ammonia. Results were in good agreement with those from the conventional enzymatic-spectro-photometric method.  相似文献   

17.
Results of the study of a piezoresonance sensor with polymaleic acid as the sensitive coating for the determination of the concentration of ammonia in air are presented. The influence of the mass of the polymer coating, the flow rate of the carrier gas, and relative humidity on the performance characteristics of the sensor was studied. The mechanism of the interaction of ammonia with the sorbent in the presence of water vapors is proposed based on experimental data and quantum chemical calculation. It is found that the sensor exhibits high selectivity for ammonia in the presence of vapors of saturated and aromatic hydrocarbons. The detection limit for ammonia at the humidity 45–55% is 0.04 mg/m3, which makes it possible to determine ammonia at a level of the maximum permissible concentration for inhabited areas; the concentration characteristic of the sensor is linear in the concentration range 0.04-40 mg/m3.  相似文献   

18.
Branched chain amino acids (BCAAs), alanine and glutamine are determined in human plasma by capillary electrophoresis with contactless conductivity detection (CE/C4D). The baseline separation of five amino acids from other plasma components is achieved on the short capillary effective length of 18 cm in 3.2 mol/L acetic acid with addition of 13% v/v methanol as background electrolyte. Migration times range from 2.01 min for valine to 2.84 min for glutamine, and LODs for untreated plasma are in the interval 0.7–0.9 μmol/L. Sample treatment is based on the addition of acetonitrile to only 15 μL of plasma and supernatant is directly subjected to CE/C4D. Circulating amino acids are measured in patients with pancreatic cancer and cancer cachexia during oral glucose tolerance test. It is shown that patients with pancreatic cancer and cancer cachexia syndrome exhibit low basal circulating BCAAs and glutamine levels and loss of their insulin-dependent suppression.  相似文献   

19.
Stabilization of Cu2+ ions in aqueous and aqueous ammonia solutions of copper acetate was studied for a wide range of ammonia concentrations. The structure of copper acetate hydrate complexes was shown to markedly change upon dissolution in water. In aqueous solutions, copper is stabilized as strongly bound Cu2+ associates (dimers) in a distorted octahedral environment composed of water molecules and acetate groups oxygen atoms in equatorial positions with strong exchange interaction via acetate groups. In solutions of copper acetate in aqueous ammonia, the concentration of ammonia has a crucial effect on the ordering of Cu2+ ions in associates. At high ammonia concentration, disordered copper tetra-ammoniate associates with the \({d_{{x^2} - {y^2}}}\) ground state are formed, whereas at low ammonia concentration, bulky Cu2+ ion associate structures are generated, with the \({d_{{x^2} - {y^2}}}\) ground state, hydroxyl groups in the equatorial plane, and water molecules in the axial positions.  相似文献   

20.
《Analytical letters》2012,45(15):2364-2377
Abstract

An automated ammonia monitoring system has been developed by putting a pervaporation unit in an enrichment cycle used in flow injection analysis mode. In the proposed system, an enrichment cycle was equipped to enable the adjustment for the measuring range of ammonium by controlling the duration of the enrichment circulation. Therefore, the system was capable to determine ammonia in both the surface water with low ammonia concentration and the ammonia-rich wastewater with the linear dynamic range of 0.05–15 mg l?1 and 15–50 mg l?1, respectively. The relative standard deviations were less than 1.9% and the quantification limit is as low as 0.03 mg l?1. The sampling frequency is 8–10 h?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号