首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acetone and n-pentane from an azeotrope with the mole ratio of 1:3, respectively. As the result of this azeotrope formation, some characteristic vibrational modes in FT-IR and chemical shifts in 1H NMR changes. The amount of these band and signal changes is an indication of the extend of interaction between two components and their orientation in unit structure of the cluster. FT-IR and 1H NMR spectra of pure substances and their azeotrope were recorded, spectral changes analyzed. Unit structure of azeotrope was deduced based on mole ratio, boiling point changes of pure components, and spectral changes in fundamental frequency and chemical shifts.  相似文献   

2.
Acetone and cyclopentane make a minimum boiling homogeneous binary azeotrope with mole ratio 2:3. Some characteristic vibrational modes, as well as (1)H NMR signals change due to the azeotrope formation. The extend of interaction of these molecules causes significant changes on some vibrational modes involved and (1)H NMR signals show some changes on their position. In this work the FTIR and (1)H NMR spectra of pure acetone, pure cyclopentane and corresponding azeotrope were recorded, mutual influences resulting from azeotrope formation have been analyzed, and spectral changes has been discussed. The unit-structure of cluster have been deduced, based on mole ratio, boiling point depression of constituents, and comparison between the spectra obtained by FTIR and (1)H NMR techniques.  相似文献   

3.
Acetone and cyclohexane make a binary azeotrope with mole ratio 3:1. Some characteristic vibrational modes of acetone and cyclohexane change due to the azeotrope formation. The extend of interaction of these molecules causes significant changes on vibrational modes involved, and (1)H NMR signals show some changes on their position. FTIR and (1)H NMR spectra of pure substances and corresponding azeotrope were recorded, mutual influences resulting from azeotrope formation have been analyzed, spectral changes have been discussed. The unit-structure of cluster were deduced based on mole ratio, boiling point depression of constituents and comparison between spectra obtained by FTIR and (1)H NMR techniques.  相似文献   

4.
Acetone and n-hexane form an azeotrope with the mole ratio 2:1. As a result of this phenomenon, some characteristic vibrational modes in FT-IR and some chemical shifts in 1H NMR spectra changes. The amount of these changes is an indication of the extension of interaction between two components and their orientation in unit structure of the cluster. FT-IR and 1H NMR spectra of pure substances and their azeotrope were recorded and spectral changes analyzed. Based on mole ratio of constituents, boiling point depressions, spectral changes in fundamental frequencies, and chemical shifts, unit structure of the azeotrope were deduced.  相似文献   

5.
Benzene and methanol make a minimum boiling point homogeneous binary azeotrope with the mole ratio 2:3. Some characteristic vibrational modes, as well as 1H NMR signals change due to the azeotrope formation. The extend of interaction of these molecules causes significant changes on some vibrational modes involved, and 1H NMR signals show some changes on their position. No IR, Raman, and NMR spectra have been reported for this constant boiling mixture, also there has not been any attempt to investigate the unit-structure of this azeotrope. In this work the FTIR, FT-Raman, and 1H NMR spectra of pure benzene, pure methanol, and corresponding azeotrope were recorded, mutual influences resulting from azeotrope formation have been analyzed, and spectral changes has been discussed. The unit-structure of cluster has been deduced based on mole ratio, boiling point depression of constituents, and comparison among the spectra obtained by FTIR, FT-Raman, and 1H NMR techniques.  相似文献   

6.
Periodic and molecular cluster density functional theory calculations were performed on the Iα (001), Iα (021), Iβ (100), and Iβ (110) surfaces of cellulose with and without explicit H2O molecules of hydration. The energy-minimized H-bonding structures, water adsorption energies, vibrational spectra, and 13C NMR chemical shifts are discussed. The H-bonded structures and water adsorption energies (ΔEads) are used to distinguish hydrophobic and hydrophilic cellulose–water interactions. O–H stretching vibrational modes are assigned for hydrated and dry cellulose surfaces. Calculations of the 13C NMR chemical shifts for the C4 and C6 surface atoms demonstrate that these δ13C4 and δ13C6 values can be upfield shifted from the bulk values as observed without rotation of the hydroxymethyl groups from the bulk tg conformation to the gt conformation as previously assumed.  相似文献   

7.
8.
In this work, the experimental and theoretical vibrational spectra of pyrazole (PZ) and 3,5-dimethyl pyrazole (DMP) have been studied. FTIR and FT-Raman spectra of the title compounds in the solid phase are recorded in the region 4000-400 cm(-1) and 4000-50 cm(-1), respectively. The structural and spectroscopic data of the molecules in the ground state are calculated using density functional methods (B3LYP) with 6-311+G** basis set. The vibrational frequencies are calculated and scaled values are compared with experimental FTIR and FT-Raman spectra. The observed and calculated frequencies are found to be in good agreement. The complete vibrational assignments are performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanical (SM) method. 13C and 1H NMR chemical shifts results are compared with the experimental values.  相似文献   

9.
We have examined the cation-anion-water interactions in aqueous mixtures of imidazolium ionic liquids (ILs) over the whole composition range using FTIR spectroscopy. Changes in the peak positions or band areas of OH vibrational modes of water and CH vibrational modes of imidazolium cation as a function of IL concentration indicated a diminishing trend in hydrogen-bonding network of water and qualitative changes in solution structures. 1H NMR chemical shifts of C(2)H, HC(4)C(5)H and alkyl chain protons of imidazolium cation provided useful information about the comparative strength of cation-anion-water interactions.  相似文献   

10.
Spectroscopic properties obtained by NMR and vibrational spectra both reflect the microscopic environment of solutions, and the local composition (LC) theory can be used to study environmental effects on spectroscopic properties. Based on the LC model, the relationship between NMR and vibrational spectra, including infrared (IR) spectroscopy and Raman, were investigated. For the aqueous systems-water+N, N-dimethylformamide, water+acetone, water+methanol, and water+ethanol, we performed prediction between concentration-dependent peak positions of IR and Raman, as well as between concentration-dependent vibrational properties and 1H NMR chemical shifts. The results showed that reliable prediction could be achieved with the help of the LC model. This suggests that 1H NMR chemical shifts and vibrational spectroscopic properties may tell us the same story about the local environment encountered in solution.  相似文献   

11.
The molecular geometry, vibrational frequencies, 1H and 13C NMR chemical shifts, UV-vis spectra, HOMO-LUMO analyses, molecular electrostatic potentials (MEPs), , thermodynamic properties and atomic charges of 3- and 4-Nitrobenzaldehyde oxime (C7H6N2O3) molecules have been investigated by using Hartree-Fock (HF) and density functional theory (DFT/B3LYP) methods with the 6-311++G(d, p) basis set. The calculated optimized geometric parameters (bond lengths and bond angles), the vibrational frequencies calculated and 13C and 1H NMR chemical shifts values for the mentioned compounds are in a very good agreement with the experimental data. Furthermore, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) have been simulated and the transition states, energy band gaps and molecular electrostatic potential (MEP) maps for each oxime compound have been determined. Additionally, we also report the infrared intensities and Raman activities for the compounds under study.  相似文献   

12.
The vibrational structure of the K-shell O1s → π? of acenaphthenequinone C(12)H(6)O(2) and its halogenated compound C(12)H(2)Br(2)Cl(2)O(2) has been simulated using an entirely ab initio approach. For both molecules, analysis of the calculated Franck-Condon factors confirm without ambiguity that, contrary to initial claims, the C-H stretching modes are not modified in the core states and are not excited. For C(12)H(6)O(2), the vibrational fine structure appears to be mainly due to three modes, involving C=O? asymmetric stretch and in-plane ring deformation modes, due to the symmetry breaking of the core state. For C(12)H(2)Br(2)Cl(2)O(2), the vibrational excitation arises essentially from the C=O? asymmetric stretch, with numerous secondary peaks arising from hot and combination bands. For both molecules, these bands are probably responsible for the asymmetry deduced in the experimental fits using a unique Morse potential and initially assigned to anharmonic effects.  相似文献   

13.
The structural and electronic properties of berberine and berberrubine have been studied extensively using density functional theory (DFT) employing B3LYP exchange correlation. The geometries of these molecules have been fully optimized at the B3LYP/6-311G** level. The chemical shift of 1H and 13C resonances in NMR spectra of these molecules have been calculated using the gauge invariant atomic model (GIAO) method as implemented in Gaussian 98. One- and two-dimensional HSQC (1H-13C), HMBC (1H-13C) and ROESY (1H-1H) spectra were recorded at 500 MHz for the berberine molecule in D(2)O solution. All proton and carbon resonances were unambiguously assigned, and inter-proton distances obtained from ten observed NOE contacts. A restrained molecular dynamics (RMD) approach was used to get the optimized solution structure of berberine. The structure of berberine and berberrubine molecules was also obtained using the ROESY data available in literature. Comparison of the calculated NMR chemical shifts with the experimental values revealed that DFT methods produce very good results for both proton and carbon chemical shifts. The importance of the basis sets to the calculated NMR parameters is discussed. It has been found that calculated structure and chemical shifts in the gas phase predicted with B3LYP/6-311G** are in very good agreement with the present experimental data and the measured values reported earlier.  相似文献   

14.
A molecular design was performed for the caged molecule (CH)8: the replacement of CH groups by N atoms to increase the content of N as well as reduce the content of H. A series of caged molecules were obtained: (CH)xN(8-x) (0 < or = n < or = 8). The studied aspects are as follows: (i) molecular geometries and electronic structures, (ii) the analysis of the electronic structure using natural bond orbital (NBO) and atoms in molecules (AIM), and (iii) some physicochemical properties of studied molecules, such as the dipole moments, IR vibrational spectra, NMR chemical shifts, heats of formation, and relative specific impulses, were provided. Our studies show that these molecules should be a kind of potential and novel energetic material. Our work provides some useful information for the experimental study of these molecules. The effect of the substitution of N atoms for CH groups on the properties of this kind of caged molecule is presented.  相似文献   

15.
Experimental FTIR, FT-Raman and FT-NMR spectroscopic studies of o-fluoronitrobenzene and p-fluoronitrobenzene have been carried out. A detailed quantum chemical calculations have been performed using DFT/B3LYP method with 6-311++G** and 6-31G** basis sets. Complete vibrational analyses of the compounds were performed. The temperature dependence of thermodynamic properties has been analysed. The atomic charges, electronic exchange interaction and charge delocalisation of the molecule have been performed by natural bond orbital (NBO) analysis. Molecular electrostatic surface potential (MESP), total electron density distribution and frontier molecular orbitals (FMOs) are constructed at B3LYP/6-311++G** level to understand the electronic properties. The charge density distribution and site of chemical reactivity of the molecules have been obtained by mapping electron density isosurface with electrostatic potential surfaces (ESP). The electronic properties, HOMO and LUMO energies were measured by time-dependent TD-DFT approach. (1)H and (13)C NMR spectra were recorded and (1)H and (13)C nuclear magnetic resonance chemical shifts of the molecule were calculated. The (1)H and (13)C nuclear magnetic resonance (NMR) chemical shifts of the molecules in chloroform solvent and in gas phase were calculated by using the Gauge-Independent Atomic Orbital (GIAO) method and are found to be in good agreement with experimental values. The theoretical parameters obtained at B3LYP levels have been compared with the experimental values.  相似文献   

16.
A new indirect detection scheme for obtaining (15)N/(1)H shift correlation spectra in crystalline proteins is described. Excellent water suppression is achieved without the need for pulsed field gradients, and using only a 2-step phase cycle. Careful attention to overall NMR instrument stability was found critical for obtaining the best resolution and sensitivity. Magnetic dilution by deuteration of the protein in combination with high-speed magic angle spinning produces (1)H resonances averaging only 0.22 ppm in width, and in some cases lines as narrow as 0.17 ppm are obtained. In application to two different polymorphs of ubiquitin, structure dependent differences in both (15)N and (1)H amide chemical shifts are observed. In one case, distinct shifts for different molecules in the asymmetric unit are seen, and all differ substantially from solution NMR shifts. A gain of 7 in sensitivity makes the method competitive with solution NMR as long as nanocrystalline samples are available.  相似文献   

17.
The solid phase FTIR and FT-Raman spectra of 4-butyl benzoic acid (4-BBA) have been recorded in the regions 400-4000 and 50-4000cm(-1), respectively. The spectra were interpreted in terms of fundamentals modes, combination and overtone bands. The structure of the molecule was optimized and the structural characteristics were determined by density functional theory (DFT) using B3LYP method with 6-311++G(d,p) as basis set. The vibrational frequencies were calculated for monomer and dimer by DFT method and were compared with the experimental frequencies, which yield good agreement between observed and calculated frequencies. The infrared and Raman spectra were also predicted from the calculated intensities. (13)C and (1)H NMR spectra were recorded and (13)C and (1)H nuclear magnetic resonance chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method. UV-visible spectrum of the compound was recorded in the region 200-400nm and the electronic properties HOMO and LUMO energies were measured by time-dependent TD-DFT approach. The geometric parameters, energies, harmonic vibrational frequencies, IR intensities, Raman intensities, chemical shifts and absorption wavelengths were compared with the available experimental data of the molecule.  相似文献   

18.
The inelastic neutron scattering (INS) spectrum of polycrystalline Cs2[B12H12] is assigned through 1200 cm(-1) on the basis of aqueous and solid-state Raman/IR measurements and normal mode analyses from solid-state density functional theory. The Cs+ cations are responsible for frequency shifts of the internal cage vibrational modes and I(h) cage mode splittings due to the crystal T(h) site symmetry. These changes to the [B12H12]2- molecular modes make isolated-molecule calculations inadequate for use in complete assignments. Solid-state calculations reveal that 30/40 cm(-1) shifts of Tg/Hg molecular modes are responsible for structure in the INS spectrum unobserved by optical methods or in aqueous solutions.  相似文献   

19.
The Fourier Transform Infrared spectrum of (S)-4 ethyl-4-hydroxy-1H-pyrano [3',4':6,7]-indolizino-[1,2-b-quinoline-3,14-(4H,12H)-dione] [camptothecin] was recorded in the region 4000-400 cm(-1). The Fourier Transform Raman spectrum of camptothecin (CPT) was also recorded in the region 3500-50 cm(-1). Quantum chemical calculations of geometrical structural parameters and vibrational frequencies of CPT were carried out by MP2/6-31G(d,p) and density functional theory DFT/B3LYP/6-311++G(d,p) methods. The assignment of each normal mode has been made using the observed and calculated frequencies, their IR and Raman intensities. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FT-IR and FT-Raman spectra. Most of the computed frequencies were found to be in good agreement with the experimental observations. The isotropic chemical shifts computed by (13)C and (1)H NMR analysis also show good agreement with experimental observations. Comparison of calculated spectra with the experimental spectra provides important information about the ability of computational method to describe the vibrational modes of large sized organic molecule.  相似文献   

20.
We have applied computational protocols based on DFT and molecular dynamics simulations to the prediction of the alkyl 1H and 13C chemical shifts of alpha-d-glucose in water. Computed data have been compared with accurate experimental chemical shifts obtained in our laboratory. 13C chemical shifts do not show a marked solvent effect. In contrast, the results for 1H chemical shifts provided by structures optimized in the gas phase are only fair and point out that it is necessary to take into account both the flexibility of the glucose structure and the strong effect exerted by solvent water thereupon. Thus, molecular dynamics simulations were carried out to model both the internal geometry as well as the influence of solvent molecules on the conformational distribution of the solute. Snapshots from the simulation were used as input to DFT NMR calculations with varying degrees of sophistication. The most important factor that affects the accuracy of computed 1H chemical shifts is the solute geometry; the effect of the solvent on the shielding constants can be reasonably accounted for by self-consistent reaction field models without the need of explicitly including solvent molecules in the NMR property calculation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号