首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The extraction of Np(IV), Pu(IV) and U(VI) from aqueous hydrochloric acid into quaternary amines has been studied. The dependence of the distribution coefficient on amine concentration suggests that the actinide ions extracted are NpCl 6 2− PuCl 6 2− and UO2Cl 4 2− . This is further supported by the absorption spectra of the amine extracts of these actinide ions. Based on the extraction data obtained, a simple method for the separation of typical metal ions such as Cs, lanthanides and Zr from U(VI) and Pu(IV) is suggested.  相似文献   

2.
The extraction behavior of Pu(III), Pu(IV), Np(IV) and Np(V) with di(chlorophenyl)-dithiophosphinic acid (DCPDTPA) in toluene from nitric acid solutions was studied systematically. In aqueous solution with high nitric acid concentration, the extraction capability (represented by distribution ratio D) for Pu and Np in different valences with DCPDTPA comes as D Np(IV) > D Pu(IV) > D Np(V) > D Pu(III). A new radiochemical procedure for Np/Pu separation based on DCPDTPA extraction was proposed and tested with simulated samples. The recoveries of Np and Pu are as high as 80 % after the whole separation procedure, with the decontamination factor of trivalent lanthanide fission product element (e.g. Eu) greater than 1.5 × 104. The decontamination factor of Pu–Np is 2.0 × 103, while the decontamination factor of Np–Pu is greater than 4.8 × 103 after additional purification.  相似文献   

3.
A sequential separation procedure has been developed for the determination of transuranic elements and fission products in uranium metal ingot samples from an electrolytic reduction process for a metallization of uranium dioxide to uranium metal in a medium of LiCl-Li2O molten salt at 650 °C. Pu, Np and U were separated using anion-exchange and tri-n-butylphosphate (TBP) extraction chromatography. Cs, Sr, Ba, Ce, Pr, Nd, Sm, Eu, Gd, Zr and Mo were separated in several groups from Am and Cm using TBP and di(2-ethylhexyl)phosphoric acid (HDEHP) extraction chromatography. Effect of Fe, Ni, Cr and Mg, which were corrosion products formed through the process, on the separation of the analytes was investigated in detail. The validity of the separation procedure was evaluated by measuring the recovery of the stable metals and 239Pu, 237Np, 241Am and 244Cm added to a synthetic uranium metal ingot dissolved solution.  相似文献   

4.
Silica-gel has been used as an inert support for the extraction chromatographic separation of actinides and lanthanides from HNO3 and synthetic high level waste (HLW) solutions. Silica-gel was impregnated with tri-butyl phosphate (TBP), to yield STBP; 2-ethylhexyl phosphonic acid, mono 2-ethylhexyl ester (KSM-17, equivalent to PC-88A), SKSM; octyl(phenyl)-N,N-diisobutyl carbamoylmethylphosphine oxide (CMPO), SCMPO; and trialkylphosphine oxide (Cyanex-923), SCYN and sorption of Pu(IV), Am(III) and Eu(III) from HNO3 solutions was studied batchwise. Several parameters, like time of equilibration, HNO3 and Pu(IV) concentrations were varied. The uptake of Pu(IV) from 3.0M HNO3 followed the order SCMPO>SCYN>SKSM>STBP. With increasing HNO3 concentration, D Pu increased up to 3.0M of HNO3 for STBP, SKSM and SCMPO and then decreased. In the case of Am and Eu with SCMPO, the D values initially increased between 0.5 to 1.0M of HNO3, remained constant up to 5.0M and then slightly decreased at 7.5M. Also, the effects of NaNO3, Nd(III) and U(VI) concentrations on the uptake of Am(III) from HNO3 solutions were evaluated. With increasing NaNO3 concentration up to 3.0M, D Am remained almost constant while it was observed that it decreases drastically by adding Nd(III) or U(VI). The uptake of Pu and Am from synthetic pressurized heavy water reactor high level waste (PHWR-HLW) in presence of high concentrations of uranium and after depleting the uranium content, and finally extraction chromatographic column separation of Pu and Am from U-depleted synthetic PHWR-HLW have been carried out. Using SCMPO, high sorption of Pu, Am and U was obtained from the U-depleted HLW solution. These metal ions were subsequently eluted using various reagents. The sorption results of the metal ions on silica-gel impregnated with several phosphorus based extractants have been compared. The uptake of Am, Pu and rare earths by SCMPO has been compared with those where CMPO was sorbed on Chromosorb-102, Amberchrom CG-71 and styrene divinylbenzene copolymer immobilized in porous silica particles.  相似文献   

5.
Extraction of actinides from aqueous nitric acid by three different heterocyclic dicarboxamides (2,6-pyridinedicarboxamide, 2,2′-bipyridine-6,6′-dicarboxamide and 1,10-phenanthroline-2,9-dicarboxamides) was studied. It was shown that all studied ligands extract actinides at different oxidation states (U(VI), Np(V), Pu(IV), Am(III), Cm(III)) from acidic solutions. All studied diamides extract Am(III) better than Cm(III). Et(pHexPh)ClPhen contains electron-withdrawing chlorine atoms at the positions 4 and 7 of the phenanthroline moiety (SFAm/Cm = 4–6) and possesses the highest separation factor Am(III)/Cm(III). The studied ligands possess high extraction ability to all actinides present in HLW and therefore they could be used for simultaneous extraction of actinides in the GANEX-type process.  相似文献   

6.
A method has been developed for the extraction of uranium, neptunium and plutonium from human urine using the comparatively cheap technical amine ALAMINE-336. These elements are coprecipitated with a calcium phosphate carrier, which is then subjected to a wet-ashing procedure with NHO3/H2O2 and HCl/H2O2. The residue is dissolved in 10M hydrochloric acid and U, Np and Pu are extracted with a 10% ALAMINE-336/xylene solution, followed by subsequent back-extraction with 10M HCl/NH4I (Pu), 4M HCl/HF (Np) and 0.1M HCl (U), respectively. The average recoveries are around 95%.  相似文献   

7.
Thermal decomposition of Pu(C2O4)2·6H2O, Pu2(C2O4)3·10H2O and Np(C2O4)2 ·6H2O has been studied by using combination of gas chromatography, infrared spectroscopy, spectrophotometry and complex thermal analysis. We also investigated the decomposition of Pu oxalate under its -radiation. The reduction of Pu(IV) to Pu(III) has been confirmed. We found Np(V), which is formed from Np(IV), on the basis of infrared and absorption spectra of the intermediate compounds.  相似文献   

8.
Depth profiles and inventories of237Np in sediment cores from the Ribble Estuary in the Irish Sea have been studied along with those of Pu isotopes,241Am and137Cs, to allow a more detailed look of anomalously high237Np content observed in this estuary previously. The comprehensive data obtained showed that the depth profiles of both237Np contents and237Np/239,240Pu activity ratios were clearly different from those of239,240Pu,241Am, and137Cs and their activity ratios. As much as 80–90% of237Np inventories (0.32–1.06 kBq/m2), found in three cores, were estimated to be derived from a source other than Sellafield, on the basis of comparison of the237Np/239,240Pu inventory ratio (0.65–1.74%) found in the Ribble Estuary cores with those (0.10–0.16%) in the Ravenglass Estuary cores.  相似文献   

9.
The interaction of Np(VI), Pu(VI), Np(V), Np(IV), Pu(IV), Nd(III), and Am(III) with Al(III) in solutions at pH 0–4 was studied by the spectrophotometric method. It was shown that, in the range of pH 3–4, the hydrolyzed forms of neptunyl and plutonyl react with the hydrolyzed forms of aluminium. In the case of Pu(VI), the mixed hydroxoaqua complexes (H2O)3PuO2(-OH)2Al(OH)(H2O)3 2+ or (H2O)4PuO2OAl(OH)(H2O)4 2+ are formed at the first stage of hydrolysis. Np(VI) also forms similar hydroxoaqua complexes with Al(III). The formation of the mixed hydroxoaqua complexes was also observed when Np(IV) or Pu(IV) was simultaneously hydrolyzed with Al(III) at pH 1.5–2.5. The Np(IV) complex with Al(III) has, most likely, the formula (H2O) n (OH)Np(-OH)2Al(OH)(H2O)3 3+. At pH from 2 to 4.1 (when aluminium hydroxide precipitates), the Np(V) or Nd(III) ions exist in solutions with or without Al(III) in similar forms. When pH is increased to 5–5.5, these ions are almost not captured by the aluminium hydroxide precipitate.  相似文献   

10.
A new Cs(I) magnetic ion-imprinted polymer (Cs(I)-MIIP) aimed at the selective adsorption and separation of Cs(I) from salt lake brine was prepared. The Fe3O4@SiO2 was used as supporter, Cs(I) as template ion, and carboxymethyl chitosan as functional monomer. The product was characterized by Fourier transform infrared spectra, XRD, energy-dispersive spectrometry, scanning electron microcopy, thermogravimetric analysis, and vibrating sample magnetometer. The adsorption of the Cs(I)-MIIP in solution was investigated, which indicated the maximum adsorption capacity was 36.15?mg·g?1 under the optimum conditions. The pseudo-first-order kinetic model and the Freundlich isotherm model were applied to predict the adsorption process of Cs(I) onto Cs(I)-MIIP. Selectivity experiments showed that the relative selectivity coefficient (k′) were 24.995, 1.73, 1.43, 4.83, and 1.63 to Cs(I)/Li(I), Cs(I)/Na(I), Cs(I)/K(I), Cs(I)/Rb(I), and Cs(I)/Sr(II) binary solutions, higher than those of NIP, respectively. Furthermore, the Cs(I)-MIIP was successfully applied to the enrichment and separation of Cs(I) from the salt lake brine of Qinghai, with satisfactory Cs(I) recovery rates.  相似文献   

11.
Qiao J  Hou X  Roos P  Miró M 《Talanta》2011,84(2):494-500
This paper reports an analytical method for rapid determination of neptunium (237Np) in environmental solid samples exploiting automated sequential injection (SI)-based anion exchange separation. Pivotal issues on analytical method performance were investigated including sorption behavior of 237Np onto various AG 1-type anion exchangers; suitability of 242Pu as a tracer for 237Np determination in environmental solid samples; and long-term chemical stability of tetravalent Np. Experimental results revealed that the degree of resin cross-linking has a significant influence on the separation efficiency in terms of chemical yields of 237Np and removal of interfering nuclides. Although ca. 30% of sorbed Np onto AG 1-×4 was stripped out during HCl rinsing step for the removal of Th, chemical yield ratios of 237Np to 242Pu were proven steady with an average value of 0.67 ± 0.04 (n = 15) under selected experimental conditions. Disulfite-8 M HNO3 was selected as a redox pair for valence adjustment to Np(IV) and the tetravalent Np in the sample solution was demonstrated to be stabilized for up to 5 days under 3 °C. The analytical results for reference materials showed a good agreement with the expected values, thereby demonstrating the usefulness of 242Pu as a non-isotopic tracer for 237Np chemical yield monitoring. The on-column separation procedure fosters rapid analysis as required in emergency situations since each individual sample can be handled within 2.5 h, and leads to a significant decrease in labor intensity compared to conventional batch-wise protocols.  相似文献   

12.
A procedure has been developed using 242Pu as tracer for simultaneous determination of 237Np and 239,240Pu in environmental samples. The validity of the method has been demonstrated by ICPMS and a-spectroscopy for up to 10 gram soil and sediment, seawater up to 200 litres. The paper describes a suitable chemical procedure for Np and Pu including a quantitative pre-concentration of neptunium and plutonium, preparation of Np4+ and Pu4+, Np(NO3)6 2- and Pu(NO3)6 2-. The ratio of 237Np/242Pu (or 237Np/239Pu) before and after the procedure has been determined using 10 g soil (free from Np and Pu) R before/R after = 1.004±3.3% (S.D n = 20) and 1 litre seawater R before/R after = 1.019±1.9% (S.D., n = 12). Results from the intercomparison samples IAEA-135, IAEA-381 and from environmental samples are presented.  相似文献   

13.
A new method for the determination of transuranium elements, Np, Pu and Am with extraction-liquid scintillation counting has been studied systematically. Procedures for the separation of Pu and Am by HDEHP-TRPO extraction and for the separation of Np by TTA-TiOA extraction have been developed, by which the recovery of Np, Pu and Am is 97%, 99% and 99%, respectively, and the decontamination factors for the major fission products (90Sr,137Cs etc.) are 104–106. Pulse shape discrimination (PSD) technique has been introduced to liquid scintillation counting, by which the counting efficiency of -activity is >99% and the rejection of -counts is >99.95%. This new method, combining extraction and pulse shape discrimination with liquid scintillation technique, has been successfully applied to the assay of Np, Pu and Am in high level radioactive waste.  相似文献   

14.
A systematic study of separating the actinides from each other in 1 M hydrochloric acid media has been carried out using selective oxidation/reduction processes followed by coprecipitation with neodymium fluoride. We have optimized two such procedures, one with bromate and another with permanganate, for the sequential separation of Am, Pu, Np, and U isotopes. The first procedure involves oxidation of Pu, Np, and U to +6 state in 1 M HCl media at 85° C with 30% NaBrO3 and separation from trivalent Am by collecting the latter on the first NdF3 coprecipitated source. Plutonium is then reduced and converted to +4 oxidation state with 40% NaNO2 at 85°C, while Np and U are kept oxidized with additional bromate in 50–70°C hot solution, thus separating Pu by collection on a second NdF3 source. At this stage, Np present in the filtrate is reduced with hydroxylamine hydrochloride and separated from U by collecting on a third source. Subsequently, U is reduced with 30% TiCl3 and co-precipitated on a final source. The second procedure, which employs KMnO4 in 1 M HCl media at 60–85°C for oxidizing Pu, Np, and U, and separating from Am, produced MnO2 which is collected along with Am on the coprecipitated NdF3. This MnO2 is dissolved on the filter itself with 1 mL of acidified 1.5% H2O2 without any degradation of the -spectra. After evaporating the filtrate to destroy H2O2, Pu, Np, and U are separated by following steps similar to those in the bromate procedure. The recoveries of the actinides with both procedurés are >99%. The decontamination factors are between 103 and 104. The precision and accuracy of measurements, as expressed by the relative standard deviation of replicate analyses, are within 5%. Absolute detection limits for a one-day count on a 600 mm2 detector at 32% counting efficiency and 450 mm2 detector at 27% counting efficiency are about 2.7×10–4 and 3.2×10–4 Bq, respectively. These procedures have been applied to the analysis of actinides in environmental samples.  相似文献   

15.
Sediment core samples taken from the Jinheung catchment located in the middle of the Korean Peninsula were used to know environmental radionuclide distribution. The grain sizes of the sediment cores were found at depth of about 17 cm suggesting that it might have occurred during a dry period of 1969. The radionuclides, 137Cs, 237Np, 239Pu, 240Pu, 234U, 238U, 228Th, 230Th, 232Th, were analyzed by sector type ICP-MS and gamma-spectrometry. The Cs and Pu distribution changed with the depth, in which the maximum ranged from 14 to 22 cm. This was due to the high activity of the results of nuclear bomb tests in the air from 1960s and showed different distribution pattern on the soil surface. The average activity ratio of 240Pu/239Pu and 237Np/239Pu was 0.173 and 0.45, respectively. These values were similar to the north hemisphere global fallout ratio of 240Pu/239Pu (0.18) and 237Np/239Pu (0.45). The 237Np/239Pu ratio showed a higher value than the global fallout ratio above 14 cm depth. The U, Th and their daughter radionuclides kept secular equilibrium in the sediment core because the average activity ratios were nearly 1.  相似文献   

16.
Bench-Scale studies on the partitioning and recovery of minoractinides from the actual and synthetic sulphate-bearing high level waste (SBHLW) solutions have been carried out by giving two contacts with 30% TBP to deplete uranium content followed by four contacts with 0.2M CMPO+1.2M TBP in dodecane. The acidity of the SBHLW solutions was about 0.3M. In the case of actual SBHLW, the final raffinate contained about 0.4% -activity originally present in the HLW, whereas with synthetic SBHLW the -activity was reduced to the background level.144Ce is extracted almost quantitative in the CMPO phase,106Ru about 12% and137Cs is practically not extracted at all. The extraction chromatographic column studies with synthetic SBHLW (aftertwo TBP contacts) has shown that large volume of waste solutions could be passed through the column without break-through of actinide metal ions. Using 0.04M HNO3>99% Am(III) and rare earths could be eluted/stripped. Similarly >99% Pu(IV) and U(VI) could be eluted.stripped using 0.01M oxalic acid and 0.25M sodium carbonate, respectively. In the presence of 0.16M SO 4 2– (in the SBHLW) the complex ions AmSO 4 + , UO2SO4, PuSO 4 2+ and Pu(SO4)2 were formed in the aqueous phase but the species extracted into the organic phase (CMPO+TBP) were only the nitrato complexes Am(NO3)3·3CMPO, UO2(NO3)2·2CMPO and Pu(NO3)4·2CMPO. A scheme for the recovery of minor actinides from SBHLW solution with two contacts of 30% TBP followed by either solvent extraction or extraction chromatographic techniques has been proposed.  相似文献   

17.
A radiochemical procedure is described for the measurement of 0.1 Bq 237Np in a solution containing similar activity concentrations of Th, U, Pu and Am as well as activity concentrations of 60Co, 90Sr and 137Cs one hundred times higher. A tracer of 239Np (milked from 243Am) was used as an isotopic spike for chemical yield determination. The relationship between gamma-counting geometries for ampoule (liquid) and NdF3 (solid) 239Np sources was established so that Np chemical yields could be measured by a comparative method. Efficiencies of alpha-spectrometers for 237Np in NdF3 sources were measured by a bootstrap technique. Two sets of experiments were designed and used to test out the procedure.  相似文献   

18.
The high level waste (HLW) generated from the reprocessing of the spent fuel of pressurized heavy water reactor has been characterized for the minor actinides. The radiation dose of the waste solution was reduced by radiochemical separation of cesium from HLW by solvent extraction with chlorinated cobalt dicarbollide dissolved in 20% nitrobenzene in xylene. Minor actinides (Np, Pu, Am, Cm) in the high level waste were assayed by alpha spectrometry following radiochemical separation. The gross alpha activity determined by liquid scintillation agrees well (within 10%) with the cumulative quantities of actinides determined by alpha spectrometry.  相似文献   

19.
Summary The Minor Actinides Recovery from HLW by Extraction Chromatography (MAREC) process was used mainly for the separation of minor actinides (MAs) and some specific fission products (FPs) from highly active liquid waste (HLW) by the composite CMPO/SiO2-P of the macroporous silica based polymeric octyl(phenyl)-N,N-diisobutylcarbamoylmethylphoshine oxide (CMPO) and others. In this study a cascade of chromatographic separation was performed on a 3.0M HNO3 solution containing 5.0 . 10-3M of 13 elements, at 323 K. The cascade consisted of three columns the first and second ones were packed with CMPO/SiO2-P and the third with SiO2-P particles. The first column was employed to prepare various eluents containing saturated CMPO. The second column was used for separation into groups. The CMPO of CMPO/SiO2-P was recovered from the effluent by the third column and a CMPO-free effluent containing minor actinides was obtained. The elements contained in the simulated HLW of 3.0M HNO3 were separated into (1) a non-adsorption group (Sr, Cs, and Ru etc.), (2) a MA-hRE (heavy rare earth)-Mo-Zr group, and (3) a lRE (light rare earth) group by eluting with 3.0M HNO3, 0.05M DTPA (diethylenetriaminepentaacetic acid) (pH 2.0) and HNO3 (pH 3.5), respectively. The resultant MA-hRE-Mo-Zr mixture containing minor actinides was then separated into the groups (1) Pd-Ru, (2) MA-hRE, and (3) Mo-Zr by utilizing 3.0M HNO3, distilled water, and 0.05M DTPA (pH 2.0) as eluents. More than 92% of CMPO in the MA-hRE containing effluent was adsorbed by SiO2-P particles. The effectivity and technical feasibility of MAREC process were demonstrated.  相似文献   

20.
Environmental contamination by artificial radionuclides and the evaluation of their sources require precise isotopic analysis and accurate determination of actinide elements above all plutonium and americium. These can be achieved by alpha spectrometry or by inductively coupled plasma mass spectrometry (ICP-MS) after chemical separation. In the present work, a simple, rapid method has been developed for the sequential separation of actinide elements from aqueous solutions and their determination by alpha spectrometry. Extraction chromatography was applied to the separation of 241Am, 244Cm, 239 + 240,238Pu, 237Np and 238,235,234U using microporous polyethylene supporting tri-n-octylamine as the stationary phase and hydrochloric acid with and without reducing agents as the mobile phase. Actinide in 9 M HCl solution is introduced into the anion exchange column; Pu (IV), Np (IV) and U(VI) are retained on the column while Am (III) and Cm passed through. Pu is eluted first, reductively, after which, Np and then U are eluted. The method can be applied to all aqueous solutions which do not contain strong complexing or precipitation agents for the elements considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号