首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 127 毫秒
1.
Li  Min  Mao  Sifeng  Wang  Shiqi  Li  Hai-Fang  Lin  Jin-Ming 《中国科学:化学(英文版)》2019,62(1):142-150
Alterations in the ratio of glutathione(GSH) to glutathione disulfide(GSSG) reveal the cell living state and are associated with a variety of diseases. In this study, an Au NPs grafted nanoporous silicon chip was used for surface assisted laser desorption ionization-mass spectrometry(SALDI-MS) detection of GSH. Due to the bond interaction between thiol of GSH and Au NPs modified on the chip surfaces, GSH could be captured from the complex cellular lysate. Meanwhile, the composite nanostructures of Au NPs grafted porous silicon surface presented good desorption/ionization efficiency for GSH detection. The GSH levels in different tumor cells were successfully detected. Chip-based SALDI-MS was optimized for quantification of intracellular GSH/GSSG ratio changing under drug stimulation in liver tumor cells, GSSG was reduced to GSH by reductant of tris(2-carboxyethyl)phosphine(TCEP) and isotope-labeling GSH was as an internal standard. It was found that the increasing concentration of drug irinotecan and hypoxia culture condition caused the rapid consumption of GSH and a decrease of GSH/GSSG ratio in liver tumor cells. The developed SALDI-MS method provided a convenient way to accurately measure and rapidly monitor cellular GSH value and the ratios of GSH/GSSG.  相似文献   

2.
利用大肠埃希菌(E.coli O111:B4)中提取精制的内毒素(Control standard endotoxin,CSE)为研究对象,以MnO2/石墨烯(MnO2/G)纳米复合材料为基质,建立了一种基于MnO2/G纳米材料的表面辅助激光解吸电离质谱(Surface-assisted laser desorption ionization mass spectrometry,SALDI-MS)的内毒素检测新方法.利用SALDI-MS方法可实现对不同注射液和饮用水中内毒素的快速鉴定与定量分析.与传统的鲎试剂检测方法相比,基于MnO2/G纳米复合材料的SALDI-MS方法具有操作简便、灵敏度高、分辨率高、检测速度快、高通量和耐盐性好等优点,有望应用于更多食品和药品中细菌内毒素的高通量快速筛查.  相似文献   

3.
Nanoparticles (NPs) are useful as matrixes for the analyses of several types of biomolecules (including aminothiols, peptides, and proteins) and for mass spectrometric imaging through surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS), mainly because of their large surface area, strong absorption in the ultraviolet-near-infrared region, and ready functionalization. Metallic NPs, metal oxide NPs, and semiconductor quantum dots, unmodified or functionalized with recognition ligands, have a strong affinity toward analytes; therefore, they allow the enrichment of biomolecules, leading to improved sensitivity with minimal matrix interference in their mass spectra. SALDI-MS using NPs overcomes the two major problems commonly encountered in matrix-assisted laser desorption/ionization mass spectrometry: the presence of "sweet spots" and the high background signals in the low-mass region. In this tutorial review, we discuss the roles played by the nature, size, and concentration of the NPs, the buffer composition, and the laser energy in determining the sensitivity and mass ranges for the analytes. We describe internal standard SALDI-MS methods that allow the concentrations of analytes to be determined with low variation (relative standard deviations: <10%) and we highlight how the simplicity, sensitivity, and reproducibility of SALDI-MS approaches using various NPs allow the analyses of proteins and small analytes and the imaging of cells.  相似文献   

4.
A 3D metal-organic framework (MOF) nanomaterial as matrix for surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) and tandem mass spectrometry (MS/MS) was developed for the analysis of complex biomolecules. Unlike other nanoparticle matrices, this MOF nanomaterial does not need chemical modification prior to use. An exceptional signal reproducibility as well as very low background interferences in analyzing mono-/di-saccharides, peptides and complex starch digests demonstrate its high potential for biomolecule assays, especially for small molecules.  相似文献   

5.
Chemical reactions of reducing agents in the gold nanoparticle (AuNP) formation process were characterized using surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS). As the reaction of the AuNPs progresses, the produced AuNPs can serve as an efficient SALDI substrate. SALDI-MS revealed that the reducing agents and their oxidation products can be determined in the mass spectra. With respect to the transmission electron microscopic and UV-Vis spectroscopic examination of AuNPs, SALDI-MS results confirm not only the tendency toward AuNPs formation, but also reflect the information of the redox reaction process. Our results provide useful information for developing SALDI-MS methods to explore the chemical information regarding the surface behavior between adsorbates and nanomaterials.   相似文献   

6.
We have investigated six nanomaterials for their applicability as surfaces for the analyses of peptides and proteins using surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS). Gold nanoparticles (NPs) were useful nanomateriais for small analytes (e.g., glutathione); Pt nanosponges and Fe3O4 NPs were efficient nanomaterials for proteins, with an upper detectable mass limit of ca. 25 kDa. Nanomateriais have several advantages over organic matrices, including lower limits of detection for small analytes and lower batch-to-batch variations (fewer problems associated with “sweet spois”), when used in laser desorption/ionization mass spectrometry.  相似文献   

7.
We have developed a new internal standard method for the determination of the concentration of captopril (CAP) through surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) using gold nanoparticles (Au NPs). This approach provided linearity for CAP over the concentration range 2. 5–25 μM (R 2 = 0. 987), with a limit of detection (signal-to-noise ratio = 3) of 1. 0 μM. The spot-to-spot variations in the concentration of CAP through SALDI-MS analyses performed in the absence and presence of the internal standard were 26% and 9%, respectively (15 measurements). This approach provides simplicity, accuracy, precision, and great reproducibility to the determination of the levels of CAP in human urine samples.  相似文献   

8.
表面辅助激光解吸附/离子化质谱(Surface-assisted laser desorption/ionization mass spectrometry,SALDI-MS)是一种利用无机纳米粒子或纳米结构表面作为基质,辅助待测分子的解吸附和离子化的质谱技术。由于其具有灵敏度高、耐盐性好、操作简便、重现性好、检测通量高等优势,已经被广泛应用于食品安全、环境监测、生命科学等诸多领域。该文总结了近5年来,SALDI基质材料(金属及金属氧化物材料、碳材料、硅材料、金属有机骨架化合物材料等)的最新研究进展及其在生物检测领域中的应用,并对SALDI-MS基质材料的发展及应用进行了展望。  相似文献   

9.
The 5'-3' exonuclease activity of DNA polymerase was utilized in the polymerase chain reaction system to generate a specific signal concomitant with amplification. These signals were detected by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). This method obviates the need to perform extensive DNA purification of reaction products that is often necessary for detecting larger DNA molecules by mass spectrometry. Oligonucleotides complementary to the internal region of the amplicon are degraded by the 5'-3' exonuclease activity and the degradation products are analyzed by MALDI mass spectrometry. We refer to this assay as the Exo-taq assay or probe degradation assay. This method should be amenable to automation.  相似文献   

10.
表面辅助激光解吸电离质谱(SALDI-MS)已经成为固态、液态样品分析的重要手段,并且分析对象逐渐由生物大分子扩展到小分子.然而,对小分子电离微观反应机理的研究仍处于起步阶段.本研究选择3种分子结构相似的稠环芳烃化合物芘、六苯并苯、红荧烯作为研究对象,考察了这3种化合物激光电离产物的差异,并研究了激光能量对六苯并苯产物离子分布的影响.结果表明,观察到芘、六苯并苯多聚体离子产物,还观测到了六苯并苯失去C2H2的碎片离子峰;而没有观测到明显的红荧烯聚合物离子产物,只观测到了大量失去C6H5的碎片离子峰.最后,对3种不同化合物的激光电离微观机理进行了分析.由于芘、六苯并苯具有平面大π键,分子间的π-π键相互作用是产生多聚体离子的主要原因;而红荧烯的空间位阻削弱了分子间相互作用,从而阻碍了多聚体离子的形成.  相似文献   

11.
Metal nanomaterials have an emerging role in surface-assisted laser desorption ionisation-mass spectrometry (SALDI-MS) providing a useful tool to overcome some limitations intrinsically related to the use of conventional organic matrices in matrix-assisted LDI-MS. In this contribution, the possibility to use a stainless-steel-supported gold nanoparticle (AuNP) film as a versatile platform for SALDI-MS was assessed. A sacrificial anode electrosynthetic route was chosen in order to obtain morphologically controlled core-shell AuNPs; the colloidal AuNPs were, thereafter, drop cast onto a stainless-steel sample plate and the resulting AuNP film was thermally annealed in order to improve its effectiveness as LDI-MS promoter. Spectroscopic characterization of the nanostructured film by X-ray photoelectron spectroscopy was crucial for understanding how annealing induced changes in the surface chemistry and influenced the performance of AuNPs as desorption/ionisation promoter. In particular, it was demonstrated that the post-deposition treatments were essential to enhance the AuNP core/analyte interaction, thus resulting in SALDI-MS spectra of significantly improved quality. The AuNP films were applied to the detection of three different classes of low molecular weight (LMW) analytes, i.e. amino acids, peptides and LMW polymers, in order to demonstrate the versatility of this nanostructured material.  相似文献   

12.
Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF-MS) is a sensitive mass spectrometric technique which utilises acidic materials as matrices for laser energy absorption, desorption and ionisation of analytes. These matrix materials produce background signals particularly in the low-mass range and make the detection and identification of small molecules difficult and nearly impossible. To overcome this problem this paper introduces matrix-free material-enhanced laser desorption/ionisation mass spectrometry (mf-MELDI-MS) for the screening and analysis of small molecules such as carbohydrates. For this purpose, 4,4'-azo-dianiline was immobilised on silica gel enabling the absorption of laser energy sufficient for successful desorption and ionisation of low molecular weight compounds. The particle and pore sizes, the solvent system for suspension and the sample preparation procedures have been optimised. The newly synthesised MELDI material delivered excellent spectra with regard to signal-to-noise ratio and detection sensitivity. Finally, wheat straw degradation products and Salix alba L. plant extracts were analysed proving the high performance and excellent behaviour of the introduced material.  相似文献   

13.
The identification of peroxisomal membrane proteins is very important to understand the import mechanisms of substrates and proteins into these organelles and the pathogenesis of human peroxisomal disorders like the Zellweger Syndrom. Peroxisomal membrane proteins were identified after separation by gel electrophoresis, tryptic digestion and mass spectrometric analysis. Using matrix assisted laser desorption/ionization-mass spectrometry (MALDI-MS) and nanoliquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS), it was possible to identify 45 proteins of isolated yeast peroxisomal membranes.  相似文献   

14.
Separated protein bands are sequentially electrophoresed into low melting agarose plugs distributed in an apparatus of original design along the surface of a plastic drum. The rotation of the drum is synchronized to migration of electrophoretic bands to receive each band individually. Agarose plugs are dissolved enzymatically for transfer into the mass spectrometer. One microL of the agarose solution containing 1 pmol of each of three lithium and natrium salts of dodecyl sulfate (Li-Na-DS)-proteins were applied to matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) without any prepurification. It yields a signal indistinguishable from that obtained in the absence of agarose.  相似文献   

15.
Kailasa SK  Wu HF 《The Analyst》2012,137(7):1629-1638
The sensitivity and efficiency of SALDI-MS or MALDI-MS is mainly dependent on the nature of matrix. A novel approach is proposed for one-pot synthesis of dopamine dithiocarbamate-functionalized gold nanoparticles (DDTC-Au NPs). Their application to quantification of small molecules by surface assisted laser desorption/ionization time-of-flight mass spectrometry (SALDI-TOF-MS) and rapid identification of phosphopeptides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) is investigated. The synthesized DDTC-Au NPs were characterized by UV-visible and FT-IR spectroscopy, H(1)NMR, SEM and TEM. DDTC-Au NPs offers marked improvement on analyte ionization and effectively suppressed the background noise which leads to clean mass spectra. We also demonstrated the use of DDTC-Au NPs as affinity probes for selective enrichment of phosphopeptides from the solutions of microwave tryptic digested casein proteins. Compared with a conventional matrix, DDTC-Au NPs exhibited a high desorption/ionization efficiency for accurate quantification of small molecules including amino acid (glutathione), drugs (desipramine and enrofloxacin) and peptides (valinomycin and gramicidin D) and successfully utilized as novel affinity probes for straightforward and rapid identification of phosphopeptides from casein proteins (α-, β-casein and nonfat milk), showing a great potentiality to the real-time analysis.  相似文献   

16.
Matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) and liquid secondary ion-tandem mass spectrometry (LSI-MS/MS) have been applied to the analysis of synthetic polymers to generate values for the average mass and the mass of the end groups. The average mass values were calculated for polymethylmethacrylate and polystyrene standards from the MALDI-MS data. Abundant fragment ions of the polymers, generated by means of LSI-MS/MS, were consistent with the known structures of the end groups of the polymers. Furthermore, losses from the side chains of the polymers were also observed in the LSI-MS/MS spectra.  相似文献   

17.
Poly(butyl cyanoacrylate) was synthesised using triphenylphosphane and pyridine initiators. Matrix‐assisted laser desorption/ionisation time of flight mass spectrometry and NMR spectroscopy were used to confirm that the initiator remains as a chain end group. The prepared polymers were subjected to thermal degradation and re‐analysed with results that show the loss of the initiator end group for the pyridine‐initiated polymer, but not for that initiated with triphenylphosphane. Pyrolysis gas chromatography‐mass spectrometry was used to observe the presence of the pyridine initiator in the volatile degradation products.  相似文献   

18.
An automated sample preparation for high throughput accurate mass determinations by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) has been developed. Sample preparation was performed with an automated workstation and automated mass analyses were performed with a commercial MALDI-TOF mass spectrometer. The method was tested with a 41-sample library. MALDI-TOFMS was found to give the needed sensitivity, accurate mass measurement, and soft ionization necessary for structure confirmation, even of mixtures. A mass accuracy of 5 ppm or less was obtained in over 80% of known compound measurements. A mass accuracy better than 10 ppm was obtained for all measurements of known compounds. Analyses of parallel synthesis products resulted in 77% of the measurements with a mass accuracy of 5 ppm or better.  相似文献   

19.
The principles and methods of soft ionization mass spectrometry in combination with pyrolysis of macromolecules are outlined. Essential features of the newly developed techniques are the extension of the recorded mass range and the almost exclusive formation of molecular ions of the pyrolyzates. Using field ionization and field desorption mass spectrometry at low and high mass resolution, with electrical and photographic detection, pyrolysis products of biomass were analyzed for the first time. The results of flash pyrolysis by Curie-point heating and thermally programmed degradation of biopolymers are compared.The main topic is the evaluation of the methodology for time- and temperature-resolved pyrolysis. The thermograms and pyrolysis mass spectra obtained enable the study of pyrolysis reactions and the chemical fingerprinting of complex biological matter. The kinetics for the devolatilization of individual chemical species or classes of compounds can be monitored. Curie-point pyrolysis of biopolymers such as kappa-carrageenan and time-programmed degradation of cellulose and lignin are reported. Furthermore, preliminary investigations of pine wood and coal illustrate the potential of the introduced methods.  相似文献   

20.
A method for the rapid screening and determination of amphetamine‐type designer drugs in saliva by a novel nib‐assisted paper spray‐mass spectrometry procedure is described. Under optimized conditions, the limit of detections for amphetamine derivatives (model samples: o‐, m‐, p‐chloroamphetamine and o‐, m‐, p‐fluoroamphetamine, respectively) were determined to 0.1 μg/mL by the nib‐assisted paper spray‐mass spectrometry method. This method is easier and has a higher sensitivity than similar methodologies, including atmospheric pressure/matrix‐assisted laser desorption ionization mass spectrometry and electrospray‐assisted laser desorption ionization/mass spectrometry. Data obtained using more classical separation methods, including liquid chromatography and capillary electrophoresis, are also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号