首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
陈正 《力学学报》2018,50(6):1418-1435
奇异摄动被广泛应用于求取力学问题的近似解.一个典型问题就是流体力学中的边界层.郭永怀先生曾发展了适用于平板黏性流动边界层问题的奇异摄动理论.类似于流体力学中的边界层,燃烧研究中的层流预混火焰也可以通过奇异摄动理论进行分析,在燃烧研究中通常称其为大活化能渐近分析.本文介绍了大活化能渐近分析在一维平面预混火焰和球形传播火焰中的应用及相关研究进展.首先介绍了预混火焰结构及其涉及的不同特征尺度,分析了大活化能条件下出现的特征尺度分离,并给出了关于平面预混火焰大活化能渐近分析的详细推导,讨论了热辐射对火焰传播的影响;然后介绍了大活化能渐近分析在点火与球形传播火焰方面的应用,指出了只有能够同时描述点火与球形火焰传播的理论才能准确地预测临界点火条件,并讨论了考虑链式反应的点火与火焰传播理论,分析了热辐射对球形火焰传播的影响,给了关于火焰稳定性理论研究的发展趋势.最后,基于当前研究进展对未来的研究方向进行了展望,其中涉及多步化学反应、低温冷火焰、复杂流动、辐射重吸收等.   相似文献   

2.
Most of the asymptotic considerations of the interaction of premixed flames with a general flow, i.e. curved and stretched flames subjected to time dependent flow, are dedicated to high activation energy asymptotes. Therefore, in these considerations the reaction zone is thin and the temperature within the reaction zone is constant to the leading order of approximation. Here we consider an order unity activation energy for near-equidiffusion flames and show that the flame speed relations obtained are distinct from those obtained by high activation energy asymptotes. The flame is assumed to be thin in comparison with the flow scales but the reaction zone is no longer thin in comparison with the flame width. Although obtaining analytical solutions is problematic even for undisturbed flames with wide reaction zones, we found that the propagation speed of disturbed premixed flames with wide reaction zones is determined by analytical integrals involving the temperature profile of the undisturbed flame. We also found independent effects of curvature and stretch for the flames with wider reaction zones. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
综合应用同步热分析仪、改进的哈特曼爆炸测试装置及高速摄影系统,对月桂酸与硬脂酸粉尘的热解氧化特性及其在半封闭竖直管道内的火焰传播特性开展了实验研究,并分析讨论了月桂酸与硬脂酸粉尘爆炸燃烧过程中热解动力学与火焰传播特性的关系。结果表明,当粉尘云质量浓度为125 g/m3时,月桂酸粉尘云的火焰锋面结构比硬脂酸平滑,但硬脂酸粉尘的火焰传播速度明显大于月桂酸;随着质量浓度的增加,月桂酸和硬脂酸粉尘的火焰前锋逐渐变得离散,火焰传播速度逐渐增加,但速度差值逐渐减小;月桂酸粉尘的平均火焰传播速度在750 g/m3的粉尘云质量浓度下高于硬脂酸,火焰结构连续性显着降低。低质量浓度条件下月桂酸与硬脂酸粉尘云火焰传播特性差异主要由快速热解阶段的氧化放热特性决定,指前因子越大,参与热解和氧化反应的活性中心越多,氧化放热量越大,放热速率越快,火焰传播速度越快,火焰锋面结构由光滑连续向不规则离散的转变越快。随着粉尘云质量浓度的增加,火焰传播特性差异逐渐由活化能及火焰前锋预热区内氧气的质量输运过程控制,活化能越大,耗氧量越大,耗氧速率越快,越易导致火焰传播速度下降,火焰锋面趋于复杂,火焰结构连续性降低。  相似文献   

4.
《Comptes Rendus Mecanique》2017,345(1):99-116
Spray flames are known to exhibit amazing features in comparison with single-phase flames. The weightless situation offers the conditions in which the spray characteristics can be well controlled before and during combustion. The article reports on a joint experimental/numerical work that concerns ethanol/air spray flames observed in a spherical chamber using the condensation technique of expansion cooling (based on the Wilson cloud chamber principle), under microgravity.We describe the experimental set-up and give details on the creation of a homogeneous and nearly monosized aerosol. Different optical diagnostics are employed successfully to measure the relevant parameters of two-phase combustion. A classical shadowgraphy system is used to track the flame speed propagation and allow us to observe the flame front instability. The complete characterization of the aerosol is performed with a laser diffraction particle size analyser by measuring the droplet diameter and the droplet density number, just before ignition. A laser tomography device allows us to measure the temporal evolution of the droplet displacement during flame propagation, as well as to identify the presence of droplets in the burnt gases. The numerical modelling is briefly recalled. In particular, spray-flame propagation is schematized by the combustion spread in a 2-D lattice of fuel droplets surrounded by an initial gaseous mixture of fuel vapour and air.In its spherical expansion, the spray flame presents a corrugated front pattern, while the equivalent single-phase flame does not. From a numerical point of view, the same phenomena of wrinkles are also observed in the simulations. The front pattern pointed out by the numerical approach is identified as of Darrieus–Landau (DL) type. The droplets are found to trigger the instability. Then, we quantitatively compare experimental data with numerical predictions on spray-flame speed. The experimental results show that the spray-flame speed is of the same order of magnitude as that of the single-phase premixed flame. On the other hand, the numerical results exhibit the role played by the droplet radius in spray-flame propagation, and retrieve the experiments only when the droplets are small enough and when the Darrieus–Landau instability is triggered. A final discussion is developed to interpret the various patterns experimentally observed for the spray-flame front.  相似文献   

5.
为探索惰化剂粒径对可燃工业粉尘火焰传播特性的影响,通过建立竖直粉尘燃烧管道实验平台,在碳酸氢钠质量分数为30%的惰化条件下,就碳酸氢钠粒径对铝粉燃烧火焰传播特性的影响进行了实验研究。结果表明:平均粒径为30 μm的碳酸氢钠粉体对平均粒径为15 μm的铝粉的火焰传播速度具有较好的抑制作用,惰性粉体与可燃工业粉尘应存在粒度匹配效应;碳酸氢钠粉体对铝粉火焰温度的惰化抑制效果与其粒径呈反比关系;碳酸氢钠粉体会减小铝粉火焰预热区厚度,预热区厚度随碳酸氢钠粒径的增加先减小后增大。此外,分析了碳酸氢钠粒径对铝粉火焰传播特性影响的作用机理。  相似文献   

6.
The propagation of shock waves in a cellular bar is systematically studied in the framework of continuum solids by adopting two idealized material models, viz. the dynamic rigid, perfectly plastic, locking (D-R-PP-L) model and the dynamic rigid, linear hardening plastic, locking (D-R-LHP-L) model, both considering the effects of strain-rate on the material properties. The shock wave speed relevant to these two models is derived. Consider the case of a bar made of one of such material with initial length L 0 and initial velocity v i impinging onto a rigid target. The variations of the stress, strain, particle velocity, specific internal energy across the shock wave and the cease distance of shock wave are all determined analytically. In particular the "energy conservation condition" and the "kinematic existence condition" as proposed by Tan et al. (2005) is re-examined, showing that the "energy conservation condition" and the consequent "critical velocity", i.e. the shock can only be generated and sustained in R-PP-L bars when the impact velocity is above this critical velocity, is incorrect. Instead, with elastic deformation, strain-hardening and strain-rate sensitivity of the cellular materials being considered, it is appropriate to redefine a first and a second critical impact velocity for the existence and propagation of shock waves in cellular solids. Starting from the basic relations for shock wave propagating in D-R-LHP-L cellular materials, a new method for inversely determining the dynamic stress-strain curve for cellular materials is proposed. By using e.g. a combination of Taylor bar and Hopkinson pressure bar impact experimental technique, the dynamic stress-strain curve of aluminum foam could bedetermined. Finally, it is demonstrated that this new formulation of shock theory in this one-dimensional stress state can be generalized to shocks in a one-dimensional strain state, i.e. for the case of plate impact on cellular materials, by simply making proper replacements of the elastic and plastic constants.  相似文献   

7.
To study the effect of inert dust on gas explosion suppression mechanism, SiO2 fine powders were sprayed to suppress premixed CH4-Air gas explosion in a 20 L spherical experimental system. In the experiment, high speed schlieren image system was adopted to record explosion flame propagation behaviors, meanwhile, pressure transducers and ion current probes were used to clearly record the explosion flame dynamic characteristics. The experimental results show that the SiO2 fine powders suppressed evidently the gas explosion flame, and reduced the peak value of pressure and flame speed by more than 40 %. The ion current result shows that the SiO2 super fine powders were easy to contact with and absorb free radicals near the combustion reaction region, which greatly reduced the combustion reaction intensity, and in turn influenced the flame propagation and pressure rising.  相似文献   

8.
为了研究CO2和超细水雾对9.5%甲烷/空气初期爆炸特性的影响,采用高速纹影系统和定容燃烧弹对9.5%甲烷/空气初期爆炸特性进行了研究。分别改变CO2稀释体积分数和超细水雾质量浓度,分析在二者单独和共同作用下球形火焰传播过程、火焰传播速度和爆炸超压的变化规律。结果表明:58.3 g/m3超细水雾增强了火焰不稳定性,促进了火焰加速和爆炸超压增加,表明超细水雾不足能产生促爆作用,只有当超细水雾充足时才会抑制甲烷爆炸;CO2和超细水雾共同作用时能避免因超细水雾带来的促爆现象,可以明显减弱火焰不稳定性,减小火焰传播速度,降低爆炸超压和平均压升速率,以及明显推迟超压峰值来临时间。  相似文献   

9.
Contemporary interest exists for understanding how reaction zones stabilize and counter-propagate against incoming reactants. Images of flame position, morphology and dynamics are presented primarily from CH planar laser-induced fluorescence (CH-PLIF) measurements. Observations of the leading-edge flame behavior with respect to upstream propagation and recession downstream are made with sequential CH-PLIF imaging, and data have been revisited in light of the recent research of McCraw et al. (Flow Turbul Combust 70(1):83–97, 2007). It is found that in cases where a distinct branch of the outer (fuel-lean) edge of the reaction zone is present, the edge of the flame is either witnessed to propagate upstream or locally disappear. In cases where no distinct branch other than the main branch is observed, the flame is witnessed to either remain stationary or drop back downstream. These observations support the notion that structures in the low speed, outer edge of the reaction zone are involved in the upstream phase of the flame propagation.  相似文献   

10.
Experiments were carried out to investigate the combustion propagation phenomenon in a horizontal channel partially filled with ceramic-oxide spherical beads. A 1.22 m long, 43 mm nominally thick layer of spherical beads is located at the ignition end of a 2.44 m long, 76 mm square channel. Tests were performed with 6.4 and 12.7 mm diameter beads. A flame is ignited at the bead end wall by an automotive spark ignition system. Flame propagation and pressure measurements are obtained via ionization probes and piezoelectric pressure transducers mounted on the top and bottom surfaces of the channel. High-speed schlieren video was used to visualize the structure of the explosion front. Experiments were performed with a 31% nitrogen diluted stoichiometric methane–oxygen mixture at room temperature and at an initial pressure in the range of 15–50 kPa. For initial pressures of 15 and 20 kPa the flame accelerates to a velocity close to the speed of sound in the combustion products. For initial pressure of 30 kPa and higher DDT occurs in the gap above the bead layer. An explosion front propagating at a velocity just under the CJ detonation velocity is detected in the bead layer even though the bead layer pore size is much smaller than the detonation cell size. It is demonstrated that flame propagation within the bead layer is the driving force behind the very rapid flame acceleration observed, however the DDT event occurring in the gap above the bead layer is not affected by the bead layer porosity. Schlieren video indicates that the structure of the explosion front varies across the channel height and with propagation distance down the channel.  相似文献   

11.
This paper reports an experimental investigation of premixed propane and methane-air flames propagating freely in tubes 1.5?m long and with diameters ranging from 26 to 141?mm. The thermo-acoustic instability was eliminated by means of a novel acoustic absorber placed at the closed end of the tube. We first remark that the flame can adopt different shapes either quasi-axisymmetric and normal to the mean direction of propagation, or inclined with a larger propagation speed because of the increase in flame surface area. The minima of the propagation speeds, corresponding to non-tilted flame propagation, are then analyzed using analytical models for the self-turbulent flame propagation. The concept of a cut-off wavelength appears to be relevant to explain the different behaviors observed on the rich side of methane-air and propane-air flames.  相似文献   

12.
This paper presents pore scale simulation of turbulent combustion of air/methane mixture in porous media to investigate the effects of multidimensionality and turbulence on the flame within the pores of porous media. In order to investigate combustion in the pores of porous medium, a simple but often used porous medium consisting of a staggered arrangement of square cylinders is considered in the present study. Results of turbulent kinetic energy, turbulent viscosity ratio, temperature, flame speed, convective heat transfer and thermal conductivity are presented and compared for laminar and turbulent simulations. It is shown that the turbulent kinetic energy increases from the inlet of burner, because of turbulence created by the solid matrix with a sudden jump or reduction at the flame front due to increase in temperature and velocity. Also, the pore scale simulation revealed that the laminarization of flow occurs after flame front in the combustion zone and turbulence effects are important mainly in the preheat zone. It is shown that turbulence enhances the diffusion processes in the preheat zone, but it is not enough to affect the maximum flame speed, temperature distribution and convective heat transfer in the porous burner. The dimensionless parameters associated with the Borghi–Peters diagram of turbulent combustion have been analyzed for the case of combustion in porous media and it is found that the combustion in the porous burner considered in the present study concerns the range of well stirred reactor very close to the laminar flame region.  相似文献   

13.

The effects of varying turbulence intensity and turbulence length scale on premixed turbulent flame propagation are investigated using Direct Numerical Simulation (DNS). The DNS dataset contains the results of a set of turbulent flame simulations based on separate and systematic changes in either turbulence intensity or turbulence integral length scale while keeping all other parameters constant. All flames considered are in the thin reaction zones regime. Several aspects of flame behaviour are analysed and compared, either by varying the turbulence intensity at constant integral length scale, or by varying the integral length scale at constant turbulence intensity. The turbulent flame speed is found to increase with increasing turbulence intensity and also with increasing integral length scale. Changes in the turbulent flame speed are generally accounted for by changes in the flame surface area, but some deviation is observed at high values of turbulence intensity. The probability density functions (pdfs) of tangential strain rate and mean flame curvature are found to broaden with increasing turbulence intensity and also with decreasing integral length scale. The response of the correlation between tangential strain rate and mean flame curvature is also investigated. The statistics of displacement speed and its components are analysed, and the findings indicate that changes in response to decreasing integral length scale are broadly similar to those observed for increasing turbulence intensity, although there are some interesting differences. These findings serve to improve current understanding of the role of turbulence length scales in flame propagation.

  相似文献   

14.
以甲烷为代表性气体,研究了半封闭管道中设置多孔障碍物对可燃气体爆炸火焰传播的影响,基于大涡模拟对实验进行了重现,对比了实验与模拟中火焰传播过程的形状、位置及速度,分析了模拟结果中火焰穿过障碍物前后的流场和表面积变化,给出了衡量火焰褶皱程度的指标及算法。结果表明:大涡模拟结果与实验结果有较好的一致性;火焰在存在障碍物的管道内传播,经历层流快速膨胀、受阻回流、湍流快速发展和脉动减速4个阶段,各阶段火焰依次分别呈现加速、减速、二次加速、二次减速的波动变化;当可燃气体在开口与点火位置同端的管道内爆炸,火焰在接近障碍物时,受管道封闭端和障碍物约束显著,而出现脉动回流现象;火焰穿过多孔障碍物后,传播速度骤升至峰值,较未穿过障碍物前的最大速度可增加58.7%;障碍物是导致火焰面破碎以及面积褶皱率增大的直接原因,火焰褶皱率最大可达44.8%,比未穿过障碍物前的最大褶皱率增大39.27%。  相似文献   

15.
In this study, the effects of discharge rate and LiMn2O4 cathode properties (thickness, porosity, particle size, and solid-state diffusivity and conductivity) on the gravimetric energy and power density of a lithium-ion battery cell are analyzed simultaneously using a cell-level model. Surrogate-based analysis tools are applied to simulation data to construct educed-order models, which are in turn used to perform global sensitivity analysis to compare the relative importance of cathode properties. Based on these results, the cell is then optimized for several distinct physical scenarios using gradient-based methods. The comple-mentary nature of the gradient-and surrogate-based tools is demonstrated by establishing proper bounds and constraints with the surrogate model, and then obtaining accurate optimized solutions with the gradient-based optimizer. These optimal solutions enable the quantification of the tradeoffs between energy and power density, and the effect of optimizing the electrode thickness and porosity. In conjunction with known guidelines, the numerical optimization frame-work developed herein can be applied directly to cell and pack design.  相似文献   

16.
为了揭示煤粉尘爆炸过程中火焰传播特征,采用2种不同质量分数挥发分的煤粉在半封闭竖直燃烧管中进行实验。分别使用高速摄影装置和红外热成像装置记录火焰传播过程和空间的温度分布情况,并分析2种煤粉尘云的火焰传播速度和温度曲线。结果表明:在同等条件下,火焰在挥发分质量分数高的煤粉尘云中的传播速度和火焰温度要高于其在挥发分质量分数较低的煤粉尘云中的。煤粉尘云的体积质量和点火能量也影响着火焰的传播过程,随着煤粉尘云体积质量的增大,火焰的传播速度和火焰温度整体上呈现先增大后减小的趋势,在传播的后半段火焰速度出现震荡现象;随着点火能量的增大,火焰在煤粉尘云中的传播速度和最高温度也相应升高。通过大量的实验数据计算得到特定条件下火焰传播速度和温度的经验公式。  相似文献   

17.
基于RGB颜色模型的玉米淀粉爆燃火焰传播速度   总被引:1,自引:0,他引:1  
采用小尺度粉尘爆炸实验装置对不同质量浓度的玉米淀粉爆燃火焰传播过程进行了实验研究,建立了基于RGB颜色模型的火焰重构及形态学重建的粉尘火焰传播速度计算方法,计算了不同质量浓度下的玉米淀粉爆燃火焰传播速度。结果表明:采用基于RGB颜色模型的速度计算方法能够快速准确地计算出玉米淀粉爆燃火焰传播速度,火焰像素范围的确定是火焰速度计算的关键;管道内火焰传播速度受粉尘云质量浓度的影响,最大火焰传播速度随粉尘云质量浓度的增大先增大后减小,到达速度峰值的时间先缩短后增长,当质量浓度为0.63 kg/m3时,出现该实验条件下火焰传播速度最大值7.03 m/s。  相似文献   

18.
A new modeling strategy is developed to introduce tabulated chemistry methods in the LES of turbulent premixed combustion. The objective is to recover the correct laminar flame propagation speed of the filtered flame front when the subgrid scale turbulence vanishes. The filtered flame structure is mapped by 1D filtered laminar premixed flames. Closure of the filtered progress variable and the energy balance equations are carefully addressed. The methodology is applied to 1D and 2D filtered laminar flames. These computations show the capability of the model to recover the laminar flame speed and the correct chemical structure when the flame wrinkling is completely resolved. The model is then extended to turbulent combustion regimes by introducing subgrid scale wrinkling effects on the flame front propagation. Finally, the LES of a 3D turbulent premixed flame is performed. To cite this article: R. Vicquelin et al., C. R. Mecanique 337 (2009).  相似文献   

19.
Pantograph system of high-speed trains become significant source of aerodynamic noise when travelling speed exceeds 300 km/h. In this paper, a hybrid method of non-linear acoustic solver (NLAS) and Ffowcs Williams-Hawkings (FW-H) acoustic analogy is used to predict the aerodynamic noise of pantograph system in this speed range. When the simulation method is validated by a benchmark problem of flows around a cylinder of finite span, we calculate the near flow field and far acoustic field surrounding the pantograph system. And then, the frequency spectra and acoustic attenuation with distance are analyzed, showing that the pantograph system noise is a typical broadband one with most acoustic power restricted in the medium-high frequency range from 200 Hz to 5 kHz. The aerodynamic noise of pantograph systems radiates outwards in the form of spherical waves in the far field. Analysis of the overall sound pressure level (OASPL) at different speeds exhibits that the acoustic power grows approximately as the 4th power of train speed. The comparison of noise reduction effects for four types of pantograph covers demonstrates that only case 1 can lessen the total noise by about 3 dB as baffles on both sides can shield sound wave in the spanwise direction. The covers produce additional aerodynamic noise themselves in the other three cases and lead to the rise of OASPLs.  相似文献   

20.
周永浩  甘波  姜海鹏  黄磊  高伟 《爆炸与冲击》2022,42(1):015402-1-015402-9
为揭示甲烷/煤尘复合爆炸火焰的传播机理,利用气粉两相混合爆炸实验系统,在低于甲烷爆炸下限条件下,采用高速摄影机记录火焰传播图像,通过热电偶采集火焰温度,研究了煤尘种类以及甲烷体积分数对甲烷/煤尘复合火焰传播特性的影响。结果表明:挥发分是衡量煤尘燃烧特性的主导因素;随着煤尘挥发分的升高,燃烧反应增强,火焰传播速度升高,火焰温度升高;挥发分含量差异较小时,水分含量越低,燃烧反应越剧烈;在相同条件下,焦煤的燃烧反应强度最高,其次为长焰煤,最后为褐煤;随着甲烷体积分数的增加,煤尘颗粒的燃烧可由释放挥发分的扩散燃烧转变为气相预混燃烧,燃烧反应增强,火焰传播速度和火焰温度显著升高;热辐射和热对流作用促进煤尘颗粒热解,释放挥发分进行燃烧反应,维持复合火焰的持续传播;随着混合体系中甲烷体积分数的增加,混合爆炸机制由粉尘驱动型爆炸转为气体驱动型爆炸,燃烧反应增强;甲烷/煤尘复合爆炸火焰可由未燃区、预热区、气相燃烧区、多相燃烧区和焦炭燃烧区5部分组成,湍流扰动导致燃烧介质空间分布存在差异,使得燃烧区无规则交错分布。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号