In this study, an acetaminophen-modified glassy carbon electrode (ACMGCE) was fabricated for the purpose of investigating its electrochemical behavior by cyclic voltammetry (CV). ACMGCE serves as an excellent bifunctional electrocatalyst for the oxidation of ascorbic acid (AA) and glutathione (GSH) in a phosphate buffer solution (pH 7.0). The kinetic parameters such as the electron transfer coefficient, α, and the heterogeneous electron transfer rate constant, k', for the oxidation of AA and GSH at the ACMGCE surface were determined by CV. In addition, detection limits of 3.89 μM for AA and 0.37 μM for GSH were obtained at the ACMGCE using a differential pulse voltammetric (DPV) method. In DPV, the bifunctional modified electrode could separate the oxidation peak potentials of AA, GSH, adrenaline (AD) and tryptophan (Trp) present in the same solution, though the peak potentials were indistinguishable at a bare GCE. Finally, the modified electrode was successfully applied to the determination of AA in a pharmaceutical preparation and GSH in a human plasma sample. 相似文献
LaFeO3 nanoparticles of approximately 22 nm in size were synthesized and characterized by XRD and TEM. A novel glassy carbon electrode modified with LaFeO3 nanoparticles was constructed and characterized by electrochemical impedance spectroscopy and cyclic voltammetry. The modified electrode exhibited strong promoting effect and high stability toward the electrochemical oxidation of dopamine (DA), which gave reversible redox peaks with a formal potential of 0.145 V (vs. Ag/AgCl) in pH 7.0 phosphate buffer solution. The anodic peak current (measured by constant potential amperometry) increased linearly with the concentration of dopamine in the range from 1.5?×?10?7 to 8.0?×?10?4 M. The detection limit was 3.0?×?10?8 M. The relative standard deviation of eight successive scans was 3.47% for 1.0?×?10?6 M DA. The interference by ascorbic acid was eliminated efficiently. The method was used to determine DA in dopamine hydrochloride injections and showed excellent sensitivity and recovery. 相似文献
A kinetic stopped-flow method is described for the simultaneous determination of uric acid and ascorbic acid with tris (2,2'-bipyridine)iron(III). For the least favourable ratios of uric to ascorbic acid, in a total concentration of 10-5 M, the error in the determination of uric acid is estimated at ±10%. 相似文献
We describe the modification of a carbon paste electrode (CPE) with multiwalled carbon nanotubes (MWCNT) and an ionic liquid (IL). Electrochemical studies revealed an optimized composition of 60 % graphite, 20 % paraffin, 10 % MWCNT and 10 % IL. In a next step, the optimized CPE was modified with palladium nanoparticles (Pd-NPs) by applying a double-pulse electrochemical technique. The resulting electrode was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, cyclic voltammetry, and electrochemical impedance spectroscopy. It gives three sharp and well separated oxidation peaks for ascorbic acid (AA), dopamine (DA), and uric acid (UA), with peak separations of 180 and 200 mV for AA-DA and DA-UA, respectively. The sensor enables simultaneous determination of AA, DA and UA with linear responses from 0.6 to 112, 0.1 to 151, and 0.5 to 225 μM, respectively, and with 200, 30 and 150 nM detection limits (at an S/N of 3). The method was successfully applied to the determination of AA, DA, and UA in spiked samples of human serum and urine. Figure
The CPE was modified with multiwalled carbon nanotubes and an ionic liquid. After optimization the electrode was further modified with palladium nanoparticles. The resulting electrode gives three sharp and well separated oxidation peaks for ascorbic acid, dopamine and uric acid相似文献
This paper describes the simultaneous determination of ascorbic acid (AA), dopamine (DA), uric acid (UA) and xanthine (XN) using an ultrathin electropolymerized film of 2-amino-1,3,4-thiadiazole (p-ATD) modified glassy carbon (GC) electrode in 0.20 M phosphate buffer solution (pH 5.0). Bare GC electrode failed to resolve the voltammetric signals of AA, DA, UA and XN in a mixture. On the other hand, the p-ATD modified electrode separated the voltammetric signals of AA, DA, UA and XN with potential differences of 110, 152 and 392 mV between AA-DA, DA-UA and UA-XN, respectively and also enhanced their oxidation peak currents. The modified electrode could sense 5 μM DA and 10 μM each UA and XN even in the presence of 200 μM AA. The oxidation currents were increased from 30 to 300 μM for AA, 5 to 50 μM for DA and 10 to 100 μM for each UA and XN, and the lowest detection limit was found to be 2.01, 0.33, 0.19 and 0.59 μM for AA, DA, UA and XN, respectively (S/N = 3). The practical application of the present modified electrode was demonstrated by the determination of AA, UA and XN in human urine samples. 相似文献
We describe the modification of a carbon paste electrode (CPE) with multiwalled carbon nanotubes (MWCNT) and an ionic liquid (IL). Electrochemical studies revealed an optimized composition of 60 % graphite, 20 % paraffin, 10 % MWCNT and 10 % IL. In a next step, the optimized CPE was modified with palladium nanoparticles (Pd-NPs) by applying a double-pulse electrochemical technique. The resulting electrode was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, cyclic voltammetry, and electrochemical impedance spectroscopy. It gives three sharp and well separated oxidation peaks for ascorbic acid (AA), dopamine (DA), and uric acid (UA), with peak separations of 180 and 200 mV for AA-DA and DA-UA, respectively. The sensor enables simultaneous determination of AA, DA and UA with linear responses from 0.6 to 112, 0.1 to 151, and 0.5 to 225 μM, respectively, and with 200, 30 and 150 nM detection limits (at an S/N of 3). The method was successfully applied to the determination of AA, DA, and UA in spiked samples of human serum and urine.
This paper describes the simultaneous determination of ascorbic acid (AA), norepinephrine (NE) and uric acid (UA) using a graphene modified glassy carbon electrode (GME) in pH 4.0 phosphate buffer solution. The electrochemical behaviors of AA, NE and UA at a bare glassy carbon electrode (GCE) and the GME were studied by cyclic voltammetry. Bare GCE failed to resolve the voltammetric signals of AA, NE and UA in a mixture, whereas the GME not only resolved their voltammetric signals, but also exhibited excellent electrocatalytic activity towards their electrochemical oxidation. The oxidation peak currents of AA, NE and UA were linearly proportional to their concentrations over the range of 1.0.0–1000.0, 0.6–45.0 and 1.0–100.0 μM, respectively, and their detection limits were 1.2, 0.10 and 0.60 μM, respectively, The modified electrode is of excellent sensitivity and selectivity, and has been satisfactorily used for the simultaneous determination of AA, NE and UA in their ternary mixture. 相似文献
A novel electrode was developed through electrodepositing gold nanoparticles (GNPs) on overoxidized-polyimidazole (PImox) film modified glassy carbon electrode (GCE). The combination of GNPs and the PImox film endowed the GNPs/PImox/GCE with good biological compatibility, high selectivity and sensitivity and excellent electrochemical catalytic activities towards ascorbic acid (AA), dopamine (DA), uric acid (UA) and tryptophan (Trp). In the fourfold co-existence system, the peak separations between AA–DA, DA–UA and UA–Trp were large up to 186, 165 and 285 mV, respectively. The calibration curves for AA, DA and UA were obtained in the range of 210.0–1010.0 μM, 5.0–268.0 μM and 6.0–486.0 μM with detection limits (S/N = 3) of 2.0 μM, 0.08 μM and 0.5 μM, respectively. Two linear calibrations for Trp were obtained over ranges of 3.0–34.0 μM and 84.0–464.0 μM with detection limit (S/N = 3) of 0.7 μM. In addition, the modified electrode was applied to detect AA, DA, UA and Trp in samples using standard addition method with satisfactory results. 相似文献
For the first time, an electrodeposited nano-scale islands of ruthenium oxide (ruthenium oxide nanoparticles), as an excellent bifunctional electrocatalyst, was successfully used for hydrazine and hydroxylamine electrocatalytic oxidation. The results show that, at the present bifunctional modified electrode, two different redox couples of ruthenium oxides serve as electrocatalysts for simultaneous electrocatalytic oxidation of hydrazine and hydroxylamine. At the modified electrode surface, the peaks of differential pulse voltammetry (DPV) for hydrazine and hydroxylamine oxidation were clearly separated from each other when they co-exited in solution. Thus, it was possible to simultaneously determine hydrazine and hydroxylamine in the samples at a ruthenium oxide nanoparticles modified glassy carbon electrode (RuON-GCE). Linear calibration curves were obtained for 2.0-268.3 μM and 268.3-417.3 μM of hydrazine and for 4.0-33.8 μM and 33.8-78.3 μM of hydroxylamine at the modified electrode surface using an amperometric method. The amperometric method also exhibited the detection limits of 0.15 μM and 0.45 μM for hydrazine and hydroxylamine respectively. RuON-GCE was satisfactorily used for determination of spiked hydrazine in two water samples. Moreover, the studied bifunctional modified electrode exhibited high sensitivity, good repeatability, wide linear range and long-term stability. 相似文献
A voltammetric sensor for both the individual and the simultaneous determination of ascorbic acid (AA), uric acid (UA) and folic acid (FA) is described. It is based on a glassy carbon electrode (GCE) that was modified with bentonite (Bnt) that was first functionalized with cysteine (Cys) to which gold nanoparticles were linked. The resulting material (referred to as Au-Cys-Bnt) and the other materials were characterized by UV-vis spectroscopy, powder X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray analysis and electrochemical methods. The XRD peak positions of bentonite and Cys-functionalized bentonite prove the incorporation of Cys into bentonite. The XPS spectrum of Au-Cys-Bnt confirms the interaction of gold nanoparticles with the thiol group of Cys. The modified GCE displays high electrocatalytic activity for the oxidation of AA, UA and FA, typically at 0.19, 0.41, and 0.73 V (vs. SCE), respectively. Differential pulse voltammetric data show a linear response that covers the 1 μM to 25 mM concentration range for AA, the 1 to 200 μM concentration range for UA, and two linear ranges for FA, one from 5 to 100 μM and one from 100 μM to 1.5 mM. The sensor was applied to the determination of AA, UA and FA in (spiked) multi-vitamin syrup, bird serum and milk samples.
This paper describes the fabrication of graphene on glassy carbon electrode (GCE) by electrochemical reduction of graphene oxide (GO) attached through 1,6-hexadiamine on GCE and the simultaneous determination of structurally similar four purine derivatives using the resultant electrochemically reduced GO (ERGO) modified electrode. The electrocatalytic activity of ERGO was investigated toward the oxidation of four important purine derivatives, uric acid (UA), xanthine (XN), hypoxanthine (HXN) and caffeine (CAF) at physiological pH. The modified electrode not only enhanced the oxidation currents of the four purine derivatives but also shifted their oxidation potentials toward less positive potentials in contrast to bare GCE. Further, it successfully separates the voltammetric signals of the four purine derivatives in a mixture and hence used for the simultaneous determination of them. Selective determination of one purine derivative in the presence of low concentrations other three purine derivatives was also realized at the present modified electrode. Using differential pulse voltammetry, detection limits of 8.8 × 10−8 M, 1.1 × 10−7 M, 3.2 × 10−7 M and 4.3 × 10−7 M were obtained for UA, XN, HXN and CAF, respectively. The practical application of the modified electrode was demonstrated by simultaneously determining the concentrations of UA, XN, HXN and CAF in human blood plasma and urine samples. 相似文献
A new type of tryptophan-functionalized graphene nanocomposite (Trp-GR) was synthesized by utilizing a facile ultrasonic method via π–π conjugate action between graphene (GR) and tryptophan (Trp) molecule. The material as prepared had well dispersivity in water and better conductivity than pure GR. The surface morphology of Trp-GR was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. The electrochemical behaviors of ascorbic acid (AA), dopamine (DA), and uric acid (UA) were investigated by cyclic voltammetry (CV) on the surface of Trp-GR. The separation of the oxidation peak potentials for AA–DA, DA–UA and UA–AA was about 182 mV, 125 mV and 307 mV, which allowed simultaneously determining AA, DA, and UA. Differential pulse voltammetery (DPV) was used for the determination of AA, DA, and UA in their mixture. Under optimum conditions, the linear response ranges for the determination of AA, DA, and UA were 0.2–12.9 mM, 0.5–110 μM, and 10–1000 μM, with the detection limits (S/N = 3) of 10.09 μM, 0.29 μM and 1.24 μM, respectively. Furthermore, the modified electrode was investigated for real sample analysis. 相似文献
A carbon paste electrode modified with 2‐((7‐(2,5-dihydrobenzylideneamino)heptylimino)methyl) benzene‐1,4‐diol(DHB) and carbon nanotubes were used to simultaneously determine the concen-trations of isoproterenol(IP), uric acid(UA), and folic acid(FA) in solution. First, cyclic voltammetry was used to investigate the redox properties of the modified electrode at various scan rates. Next, the mediated oxidation of IP at the modified electrode is described. At the optimum pH of 7.0, the oxidation of IP occurs at a potential about 90 mV less than that of an unmodified carbon paste elec-trode. Based on the results of differential pulse voltammetry(DPV), the oxidation of IP showed a dynamic range between 10 and 6000 μmol/L, and a detection limit of 1.24 μmol/L. Finally, DPV was used to simultaneously determine the concentrations of IP, UA, and FA in solution at the modified electrode. 相似文献
A novel carbon-nanofiber-modified carbon-paste electrode (CNF-CPE) was employed for the simultaneous determination of dopamine (DA), ascorbic acid (AA) and uric acid (UA) with good selectivity and high sensitivity. The CNFs were prepared by combination of electrospinning technique with thermal treatment method and were used without any pretreatment. In application to determination of DA, AA and UA in the ternary mixture, the pristine CNF-CPE exhibited well-separated differential pulse voltammetric peaks with high catalytic current. Low detection limits of 0.04 μM, 2 μM and 0.2 μM for DA, AA and UA were obtained, with the linear calibration curves over the concentration range 0.04–5.6 μM, 2–64 μM and 0.8–16.8 μM, respectively. 相似文献
Differential pulse and cyclic voltammetry were applied for the oxidation of mixture of uric acid and ascorbic acid at the surface of carbon paste/cobalt Schiff base composite electrode. The electrooxidation of these compounds at bare electrode is sluggish, and there is no suitable peak separation between them. However, using cobalt methyl salophen as modifier, two well-defined anodic waves with a considerable enhancement in the peak current and a remarkable peak potential separation near 315 mV are obtained. It can improve the kinetics of electron transfer for both compounds remarkably. All these improvements are created because of the electrocatalytic property of cobalt Schiff base complex. The effect of some parameters such as pH and scan rates were studied. All the anodic peak currents for the oxidation of ascorbic acid and uric acid shifted toward more negative potential with an increase in pH, revealing that protons have taken part in their electrode reaction processes. The best peak separation with appropriate current was obtained for pH 4.0. A linear range of 5.0?×?10?4 to 1.0?×?10?8 and 1.0?×?10?3 to 1.0?×?10?8 M with detection limit of 8.0?×?10?9 and 8.0?×?10?9 M was obtained for ascorbic acid and uric acid using differential pulse voltammetry at the surface of modified electrode, respectively. Analytical utility of the modified electrode has been examined successfully using human urine samples and vitamin C commercial tablets. 相似文献
A Nafion/multi-wall carbon nanotubes (MWNT) composite film-modified electrode was fabricated. The modified electrode showed
excellent electrocatalytic activity toward ascorbic acid (AA) and uric acid (UA) in 0.1-mol L−1 NaCl medium (pH 6.5). Compared to the bare electrode that only displayed a broad and overlapped oxidation peak, the Nafion/MWNT
film-modified electrode not only remarkably enhanced the anodic peak currents of AA and UA but also avoided the overlapping
of the anodic peaks of AA and UA with a 320-mV separation of both peaks. Under the optimized conditions, the peak currents
of AA and UA were proportional to their concentration at the ranges of 8.0 × 10−5 to 6.0 × 10−3 mol L−1 and 6.0 × 10−7 to 8.0 × 10−5 mol L−1, respectively. The proposed method was used for the detection of AA and UA in real samples with satisfactory results. 相似文献
A novel poly(p-xylenolsulfonephthalein) modified glassy carbon electrode was prepared for the simultaneous determination of ascorbic acid (AA), epinephrine (EP) and uric acid (UA). Cyclic voltammetric, chronoamperometric, and differential pulse voltammetric methods were used to investigate the modified electrode for the electrocatalytic oxidation of EP, AA, and UA in aqueous solutions. The separation of the oxidation peak potentials for AA–EP and EP–UA was about 200 and 130 mV, respectively. The calibration curves obtained for AA, EP, and UA were in the ranges of 10–1343, 2–390, and 0.1–560 μmol L−1, respectively. The detection limits (S/N = 3) were 4, 0.1, and 0.08 μmol L−1 for AA, EP and UA, respectively. The diffusion coefficient and the catalytic rate constant for the oxidation of EP at the modified electrode were calculated as 1.40(±0.10) × 10−4 cm2 s−1 and 1.06 × 103 mol−1 L s−1, respectively. The present method was applied to the determination of EP in pharmaceutical and urine samples, AA in commercially available vitamin C tablet, and EP plus UA in urine samples. 相似文献
A highly sensitive method was investigated for the simultaneous determination of acetaminophen (AC), dopamine (DA), and ascorbic acid (AA) using a PbS nanoparticles Schiff base-modified carbon paste electrode (PSNSB/CPE). Differential pulse voltammetry peak currents of AC, DA and AA increased linearly with their concentrations within the ranges of 3.30 × 10−8–1.58 × 10−4 M, 5.0 × 10−8–1.2 × 10−4 M and 2.50 × 10−6–1.05 × 10−3 M, respectively, and the detection limits for AC, DA and AA were 5.36 × 10−9, 2.45 × 10−9 and 1.86 × 10−8 M, respectively. The peak potentials recorded in a phosphate buffer solution (PBS) of pH 4.6 were 0.672, 0.390, and 0.168 V (vs Ag/AgCl) for AC, DA and AA, respectively. The modified electrode was used for the determination of AC, DA, and AA simultaneously in real and synthetic samples. 相似文献
A sensitive electrochemical method was developed for simultaneous determination of uric acid (UA) and xanthine (XA) at a glassy carbon electrode modified with multi-wall carbon nanotubes (MWNTs) film. The oxidation peak currents of UA and XA were increased at the MWNTs film electrode significantly. The experimental parameters, which influence the peak currents of UA and XA, such as the amount of MWNTs on the glassy carbon electrode, the pH of the solution, accumulation time, and scan rate, were optimized. Under optimum conditions, the peak currents were linear to the concentration of UA over the wide range from 1 x 10(-7) mol L(-1) to 1 x 10(-4) mol L(-1) and to that of XA over the wide range from 2 x 10(-8) mol L(-1) to 2 x 10(-5) mol L(-1). The interferences studies showed that the MWNTs-modified electrode exhibited excellent selectivity in the presence of ascorbic acid, dopamine, and hypoxanthine. The proposed procedure was successfully applied to detect UA and XA in human serum without any preliminary treatment. 相似文献
A simple method is presented for the simultaneous differential pulse voltammetric determination of uric acid, xanthine and hypoxanthine. It is based on the improved current responses of the three analytes at carbon paste electrodes polarized in a dilute alkaline medium (0.002 mol/l NaOH, 0.1 mol/l NaClO4) at 1.3 V vs. SCE for a short time. Compared with the methods reported in the literature, this procedure has a much wider linear range (2 to 3 orders of magnitude in concentration), lower detection limits (5 to 10 g l–1) and less interference by ascorbic acid. The electrochemical responses were found to be dependent on the pre-anodization potential and the time imposed on the electrodes as well as on the alkalinity of the supporting electrolyte. The proposed procedure was used to determine uric acid, xanthine and hypoxanthine in human urine without any preliminary treatment. 相似文献