首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Two new coordination polymer frameworks Ni(NO2)2 (1) and Ni(4,4′-bipy)(NO2)2 (2) (4,4′-bipy = 4,4′-bipyridine) were synthesized by solvothermal reaction in formamide, and were characterized by elemental analysis, IR spectroscopy, single crystal X-ray diffraction, and magnetic measurement. In compound 1, each Ni2+ ion is linked with four neighboring Ni2+ ions through μ1,3-nitrito bridges forming 2D layered structure. In compound 2, each Ni2+ ion is bridged with six neighboring Ni2+ ions through four μ1,3-nitrito groups and two 4,4′-bipy ligands forming 3D structure. Magnetic measurements show weak ferromagnetism within framework of the two compounds with TN = 19 K (1) and 21 K (2).  相似文献   

2.
《Solid State Sciences》2007,9(6):465-471
The structure of the new hybrid compound [Ni3(OH)2(tp)2(H2O)4]·2H2O (tp = C8H4O42−) has been determined ab initio from synchrotron powder diffraction data and refined with the Rietveld method: space group P-1, a = 10.2077(6) Å, b = 8.0135(5) Å, c = 6.3337(4) Å, α = 97.70 (1)°, β = 97.21(1)°, γ = 108.77(1)°, Dx = 2.124 g/cm3, Rp = 0.045, RB = 0.095 (757 independent reflections). H atoms were placed geometrically and their position optimized by DFT calculation. The repeating structural unit is the chain [Ni(1)O6]2Ni(2)O6, consisting of two edges sharing octahedrons related by the symmetry center and linked via μ3-OH to a vertex of Ni(2) octahedron. The Ni(1) coordination is ensured by two oxygen atoms from two water molecules, two OH and two oxygen atoms from carboxylate groups. The linkage of the chains by the tp anions forms infinite layers parallel to the (010) planes. Interchain hydrogen bonds between the water molecules coordinating the metal ensure the cohesion of the 2D structure. The structural and magnetic properties are compared with that of the 3D fumarate-based compound [Ni3(OH)2(fum)2(H2O)4]·2H2O (fum = C4H2O42−).  相似文献   

3.
《Polyhedron》2005,24(16-17):2562-2567
Molecular magnets have been recently proposed as possible building blocks for a solid-state quantum computer. In order to substantiate and develop such a proposal, one needs to identify those molecules that are best suited for the qubit encoding and manipulation. Here, we focus on a heterometallic molecular ring, namely Cr7Ni, where the substitution of one Cr3+(S = 3/2) with Ni2+(S = 1) provides an extra spin to the otherwise compensated molecule. We show that its ground state consists in an S = 1/2 doublet, energetically well separated (Δ0/kB  13 K at zero magnetic field) from the first excited multiplet. This relatively large value of Δ0, together with the reduced mixing of the subspaces corresponding to different values of the total spin S, enables a safe encoding of the |0〉 and |1〉 states with the ground-state doublet, and allows to coherently rotate the effective S = 1/2 spin, while keeping the population loss to the excited states negligible. A further, intriguing challenge is represented by the implementation of the conditional dynamics (two-qubit gates). We present here preliminary characterization of molecular “Cr7Ni-dimers”, i.e., derivatives in which two Cr7Ni rings are linked with each other by means of delocalized aromatic amines. The resulting intercluster couplings are estimated to be ⩽1 K and are expected to be permanent, i.e., not tuneable during gating, as required by the standard approach to quantum computation. We discuss a computational scheme that allows in principle to overcome this limitation. The most relevant decoherence mechanisms for Cr7Ni and possible ways to reduce their effects are discussed as well.  相似文献   

4.
Recently the importance of catalyzing the water splitting step of the hydrogen evolution reaction (HER) was highlighted. We demonstrate here a treatment to modify a nickel surface into a highly effective bifunctional HER catalyst (i0 = 0.18 A/m2, Tafel Slope = 106 mV/dec) that has a good distribution of both water splitting sites and Hads combination sites. The resulting surface is characterized electrochemically, and with SEM, EDX, XPS and AFM. The data is found to be consistent with the treatment oxidizing the Ni surface in a novel way creating the hypothesized “Ni(OH)x” structure (x between 0 and 2).  相似文献   

5.
Isomorphously substituted (MeDM) and impregnated metal-containing MCM-41 (MeOx/IM) catalysts, in which Me = Co, Cu, Cr, Fe or Ni, have been prepared. Structural and textural characterizations of the catalysts were performed by means of X-ray diffraction (XRD), chemical analysis, Raman spectroscopy, electron paramagnetic resonance (EPR), N2 adsorption isotherms and temperature programmed reduction (TPR). Cu2+, Co2+, and Cr4+/Cr3+ species were found over the catalysts as cations incorporated in the MCM-41 structure (MeDM) or highly dispersed oxides on the surface (MeOx/IM). The MeDM catalysts exhibited a good performance in the dehydrogenation of ethylbenzene with CO2. However, MeOx/IM catalysts had a low performance in styrene production (activity less than 15 × 10?3 mmol h?1 and selectivity for styrene less than 80%) due to the high reducibility of the metals species. However, Ni2+ or Fe3+ coordinated with the MCM-41 framework, as well as NiOx and Fe2O3 extra-framework species, is continuously oxidized by the CO2 to maintain the active sites for dehydrogenating ethylbenzene. Deactivation studies on the FeDM sample showed that Fe3+ species produced active sp2 carbon compounds, which are removed by CO2; the referred sample is catalytically selective for styrene and stable over 24 h of reaction. In contrast, highly active Ni2+ and Ni0 species produced a large amount of polyaromatic carbonaceous deposits from styrene, as identified by TPO, TG and Raman spectroscopy. An acid–base mechanism is proposed to operate to adsorb ethylbenzene and abstract the β-hydrogen. CO2 plays a role in furnishing the lattice oxygen to maintain the Fe3+ active sites in the dehydrogenation of ethylbenzene to form styrene.  相似文献   

6.
A series of lithium–manganese–nickel-oxide compositions that can be represented in three-component notation, xLi[Mn1.5Ni0.5]O4 · (1  x){Li2MnO3 · Li(Mn0.5Ni0.5)O2}, in which a spinel component, Li[Mn1.5Ni0.5]O4, and two layered components, Li2MnO3 and Li(Mn0.5Ni0.5)O2, are structurally integrated in a highly complex manner, have been evaluated as electrodes in lithium cells for x = 1, 0.75, 0.50, 0.25 and 0. In this series of compounds, which is defined by the Li[Mn1.5Ni0.5]O4–{Li2MnO3 · Li(Mn0.5Ni0.5)O2} tie-line in the Li[Mn1.5Ni0.5]O4–Li2MnO3–Li(Mn0.5Ni0.5)O2 phase diagram, the Mn:Ni ratio in the spinel and the combined layered Li2MnO3 · Li(Mn0.5Ni0.5)O2 components is always 3:1. Powder X-ray diffraction patterns of the end members and the electrochemical profiles of cells with these electrodes are consistent with those expected for the spinel Li[Mn1.5Ni0.5]O4 (x = 1) and for ‘composite’ Li2MnO3 · Li(Mn0.5Ni0.5)O2 layered electrode structures (x = 0). Electrodes with intermediate values of x exhibit both spinel and layered character and yield extremely high capacities, reaching more than 250 mA h/g with good cycling stability between 2.0 V and 4.95 V vs. Li° at a current rate of 0.1 mA/cm2.  相似文献   

7.
《Comptes Rendus Chimie》2014,17(5):490-495
A new complex of [Ni3(dcp)2(H2O)10] (1) (H3dcp = 3,5-pyrazoledicarboxylic acid) has been synthesized from H3dcp and Ni(NO3)2·6H2O by hydrothermal reaction. Complex 1 has the discrete trinuclear structure. Three Ni(II) ions are bridged by two dcp3− ligands, with 10 coordinated water molecules as terminal ligands. The molecules of [Ni3(dcp)2(H2O)10] extend into three-dimensional supramolecular architectures by intermolecular O–H···O hydrogen bonds as well as π-π stacking interactions. Magnetic susceptibility measurement shows that a weak antiferromagnetic interaction is operative between nickel(II) ions and an excellent simulation of the experimental data gives D = 5.27 cm−1, J = −2.19 cm−1 and g = 2.05.  相似文献   

8.
Methanol electro-oxidation activity of ternary Pt–Ni–Cr system was studied by using a combinatorial screening method. A Pt–Ni–Cr thin-film library was prepared by sputtering and quickly characterized by a multichannel multielectrode analyzer. Among the 63 different composition thin-film catalysts, Pt28Ni36Cr36 showed the highest methanol electro-oxidation activity and good stability. This new composition was also studied in its powder form by synthesizing and characterizing Pt28Ni36Cr36/C catalyst. In chronoamperometry testing, the Pt28Ni36Cr36/C catalyst exhibited “decay-free” behavior during 600 s operation by keeping its current density up to 97.1% of its peak current density, while the current densities of Pt/C and Pt50Ru50/C catalysts decreased to 14.0% and 60.3% of their peak current densities, respectively. At 600 s operation, current density of the Pt28Ni36Cr36/C catalyst was 23.8 A gnoble metal−1, while that of those of the Pt/C and Pt50Ru50/C catalysts were 2.74 and 18.8 A gnoble metal−1, respectively.  相似文献   

9.
Strategies for countering the solubility of LiMn2O4 (spinel) electrodes at 50 °C and for suppressing the reactivity of layered LiMO2 (M=Co, Ni, Mn, Li) electrodes at high potentials are discussed. Surface treatment of LiMn2O4 with colloidal zirconia (ZrO2) dramatically improves the cycling stability of the spinel electrode at 50 °C in Li/LiMn2O4 cells. ZrO2-coated LiMn0.5Ni0.5O2 electrodes provide a superior capacity and cycling stability to uncoated electrodes when charged to a high potential (4.6 V vs Li0). The use of Li2ZrO3, which is structurally more compatible with spinel and layered electrodes than ZrO2 and which can act as a Li+-ion conductor, has been evaluated in composite 0.03Li2ZrO3 · 0.97LiMn0.5Ni0.5O2 electrodes; glassy LixZrO2 + x/2 (0<x⩽2) products can be produced from colloidal ZrO2 for surface coatings.  相似文献   

10.
11.
We have extended our research interest on titanium oxyphosphates (MII(TiO)2(PO4)2, with MII = Mg, Fe, Co, Ni, Cu, Zn) to vanadium oxyphosphates MII(VIVO)2(PO4)2 (MII = Co, Ni). For each compound two phases, named α and β according to synthesis conditions, have been stabilized at room temperature, then characterized. The four crystal structures M(VO)2(PO4)2 (α and β for M = Co, Ni) have been determined in monoclinic P21/c space group using X-ray single crystals diffraction data. Structure of the α phase is derived from the Li(TiO)(PO4) (orthorhombic Pnma) and LiNi0.50(TiO)2(PO4)2 (monoclinic P21/c) types, with cell parameters: a = 6.310(1) Å, b = 7.273(1) Å, c = 7.432(1) Å, β = 90.43(1)° for M = Co, and a = 6.297(2) Å, b = 7.230(2) Å, c = 7.421(2) Å, β = 90.36(2)° for M = Ni. Structure of the β phase is derived from the Ni(TiO)2(PO4)2-type (monoclinic P21/c) with cell parameters: a = 7.2742(2) Å, b = 7.2802(2) Å, c = 7.4550(2) Å, β = 120.171(2)° for M = Co, and a = 7.2691(2) Å, b = 7.2366(2) Å, c = 7.4453(2) Å, β = 120.231(2)° for M = Ni. All these structures consist of a three dimensional (3D) framework built up of infinite chains of tilted corner-sharing [VO6] octahedra, cross-linked by corner-sharing [PO4] tetrahedra. The M2+ ion (M = Co, Ni) is located in a triangular based antiprism which shares faces with two [VO6] octahedra. Structural filiation is discussed based on a common structural unit, a sheet where divalent cations M2+ (M = Co, Ni) are inserted. A thermal study of the α ? β transition is also presented.  相似文献   

12.
13.
The amorphous Mg–Al–Ni composites were prepared by mechanical ball-milling of Mg17Al12 with x wt.% Ni (x = 0, 50, 100, 150, 200). The effects of Ni addition and ball-milling parameters on the electrochemical hydrogen storage properties and microstructures of the prepared composites have been investigated systematically. For the Mg17Al12 ball-milled without Ni powder, its particle size decreases but the crystal structure does not change even the ball-milling time extending to 120 h, and its discharge capacity is less than 15 mAh g?1. The Ni addition is advantageous for the formation of Mg–Al–Ni amorphous structure and for the improvement of the electrochemical characteristics of the composites. With the Ni content x increasing, the composites exhibit higher degree of amorphorization. Moreover, the discharge capacity of the composite increases from 41.3 mAh g?1 (x = 50) to 658.2 mAh g?1 (x = 200) gradually, and the exchange current density I0 increases from 67.1 mA g?1 (x = 50) to 263.8 mA g?1 (x = 200), which is consistent with the variation of high-rate dischargeability (HRD). The ball-milled Mg17Al12 + 200 wt.% Ni composite has the highest cycling discharge capacity in the first 50 cycles.  相似文献   

14.
This study involves the preparation and investigation of a novel and highly selective poly(vinyl chloride)-based membrane of 2-((5-(2-hydroxy-3-methoxybenzylideneamino)-2H-1,2,4-triazol-3-ylimino)methyl)-6-methoxyphenol Schiff base ligand (HMBT), which is a neutral ionophore with sodium tetraphenyl borate (STB) in the form of an excluder and o-nitrophenyloctyl ether (o-NPOE) in the form of solvent mediators (plasticizing) as a Ni(II)-selective electrode. The observation of optimal performance was done wherein the membrane was shown to have the HMBT–PVC–NPOE-STB composition of 4:32:63:1.It worked effectively across a broad range of concentration (1.0 × 10?8 to 1.0 × 10?2 mol L?1). Meanwhile, the Nernstian slope was recorded as 29.3 mV per decade of activity between pH 3.0 and 8.0. The response time of this electrode was fast at 11 s which was used for a span of 100 days with sound reproducibility. According to the selectivity coefficients for trivalent, divalent, and monovalent cations, excellent selectivity was indicated for Ni(II) ions across a large number of citations, whereas no interference was caused by anions like PO43?, SO42? and Cl?. The proposed method in this study was applied successfully to determine Ni(II) content in different samples of water, obtaining suitable recoveries. Additionally, the probed sensor is utilized as indicator electrode when considering Ni2+ ion potentiometric titration against EDTA. In addition, the chelate’s geometry and structure of the complex formed between Ni2+ ions and HMBT, abbreviated as HMBT-Ni2, was evaluated by separating the solid product. Complex structure was confirmed based on alternative analytical and spectral methods to be structured in the bimetallic form with the formula [Ni2(HMBT)(H2O)2 Cl2]. The diamagnetic nature of the complex, which was concluded from the room temperature magnetic moment measurement combined with the UV–Vis measurement, suggested the square planar geometry around the Ni centers.  相似文献   

15.
The effect of electrolyte alkali metal cations (Li+, Na+, or K+) on the electro-oxidation of urea and benzyl alcohol on NiOOH catalyst has been investigated by means of cyclic voltammetry and chronoamperometry in the presence of an electrolyte containing LiOH, NaOH, or KOH. The catalytic activity toward the electro-oxidation of urea and benzyl alcohol was found to increase in the sequence Li+ < Na+ < K+. This activity's difference is partly caused by different surface blockage abilities by OH–M+(H2O)x (M: Li, Na, K) clusters, which is similar to many electrocatalytic reactions on Pt reported previously, additionally, incorporation of various cations to the catalyst may induce the activities difference as well.  相似文献   

16.
Transition metal oxides with composite xLi2MnO3 ·  (1  x)LiMO2 rocksalt structures (M = Mn, Ni, Co) are of interest as a new generation of cathode materials for high energy density lithium-ion batteries. After electrochemical activation to 4.6 or 4.8 V (vs. Li0) at 50 °C, xLi2MnO3 · (1  x)LiMn0.33Ni0.33Co0.33O2 (x = 0.5, 0.7) electrodes deliver initial discharge capacities (>300 mAh/g) at a low current rate (0.05 mA/cm2) that exceed the theoretical values for lithiation back to the rocksalt stoichiometry (240–260 mAh/g), at least during the early charge/discharge cycles of the cells. Attention is drawn to previous reports of similar, but unaccounted and unexplained anomalous behavior of these types of electrode materials. Possible reasons for this anomalous capacity are suggested. Indications are that electrodes in which M = Mn, Ni and Co do not cycle with the same stability at 50 °C as those without cobalt.  相似文献   

17.
Two substituted N-acylthioureas and the respective Ni(II) and Cu(II) complexes were synthesized, namely: N,N-di-n-butyl-N′-thenoylthiourea (Hnbtu); N,N-di-iso-butyl-N′-thenoylthiourea (Hibtu); bis[N,N-di-n-butyl-N′-thenoylthioureato]nickel(II), [Ni(nbtu)2]; bis[N,N-di-n-butyl-N′-thenoylthioureato]copper(II), [Cu(nbtu)2]; bis[N,N-di-iso-butyl-N′-thenoylthioureato]nickel(II), [Ni(ibtu)2]; bis[N,N-di-iso-butyl-N′-thenoylthioureato]copper(II), [Cu(ibtu)2]. The standard (p° = 0.1 MPa) molar enthalpies of formation and sublimation of the two N-acylthioureas were measured, at T = 298.15 K, by rotating-bomb combustion calorimetry and Calvet microcalorimetry, respectively. The standard (p° = 0.1 MPa) molar enthalpies of formation of the Ni(II) and Cu(II) complexes were determined, at T = 298.15 K, by high precision solution–reaction calorimetry. From the results obtained, the enthalpies of hypothetical metal–ligand and metal–metal exchange reactions, in the gaseous phase, were derived, thus allowing a discussion of the gaseous phase energetic difference between the complexation of Ni(II) and Cu(II) to 1,3-ligand systems with (S,O) ligator atoms.  相似文献   

18.
The phenomena of electrolytes affecting the surface tension of aqueous solutions and producing measurable surface potentials are reviewed in the light of recent studies of them. The factual information presented includes the molar ionic surface tension increments ki = lim(ci  0)(dσ / dci) of many ions and the surface potential increments ∆ χ = χE  χW of electrolytes involving the cations H+, Na+, K+, and NH4+ and various anions. Gaps in the data that invite filling and inconsistencies in reported data are pointed out. Correlations of ki with several properties of the ions that should be relevant to their specific effects: their sizes, quantities representing their polarizabilities, their effects on the structure of the water and the binding of water molecules by them, are presented. Correlations of the surface potential increment ∆ χ with the electrolyte surface tension increments and with the differences between the cation and anion increments are shown. Models recently proposed for the rationalization of the observed phenomena and relevant theoretical developments are shown and discussed. The paradox of hydrogen ions not promoting significant charge separation at the interface but yielding large surface potentials is emphasized.  相似文献   

19.
The characteristics of infra red femtosecond laser-induced aerosols are studied for monazite (LREE, Th(PO4)) ablation and correlations are established with inductively coupled plasma-mass spectrometry (ICP-MS) signals. Critical parameters are tested within wide ranges of values in order to cover the usual laser ablation -ICP-MS analysis conditions: pulse energy (0.15 < E0 < 1 mJ/pulse), pulse width (60 < τ < 3000 fs), ablation time (t  10 min) and transport length (l  6.3 m). Transmission electron microscopy reveals that aerosols are made of agglomerates of ~ 10 nm particles and 20–300 nm phosphorus depleted condensed spherical particles. These structures are not affected by any laser ablation parameter. Particle counting is performed using electronic low pressure impaction. Small changes on particle size distribution are noticed. They may be induced either by a peak of ablation rate in the first 15 s at high fluence (larger particles) or the loss of small particles during transport. We found a positive correlation between I (ICP-MS mean signal intensity in cps) and N (particle density in cm? 3) when varying E0 and t, suggesting that N is controlled by the irradiance (P0 in W·cm? 2). Elemental ratio measurements show a steady state signal after the initial high ablation rate (mass load effect in the plasma torch) and before a late chemical fractionation, induced by poor extraction of bigger, early condensed spherical particles from the deepening crater. Such chemical fractionation effects remain within uncertainties, however. These effects can be limited by monitoring E0 to shorten the initial transient state and delay the attainment of an unfavorable crater aspect ratio. Most adopted settings are for the first time deduced from aerosol characteristics, for infra red femtosecond laser ablation. A short transport (l < 4.0 m) limits the agglomeration of particles by collision process along the tube. Short τ is preferred because of higher P0, yet no benefit is found on ICP-MS signal intensity under 200 fs. Under such pulse widths the increased particle production induces more agglomeration during transport, thereby resulting in higher mass load effects that reduce the ionization efficiency of the plasma torch. Thus, pulse energy must be set to get an optimal balance between the need for a high signal/background ratio and limitation of mass load effects in the plasma torch.  相似文献   

20.
Low-temperature calorimetric measurements have been performed on DyBr3(s) in the temperature range (5.5 to 420 K ) and on DyI3(s) from T=4 K to T=420 K. The data reveal enhanced heat capacities below T=10 K, consisting of a magnetic and an electronic contribution. From the experimental data on DyBr3(s) a C0p,m (298.15 K) of (102.2±0.2) J·K−1·mol−1 and a value for {S0m (298.15 K)  S0m (5.5 K)} of (205.5±0.5) J·K−1·mol−1, have been obtained. For DyI3(s), {S0m (298.15 K)  S0m (4 K)} and C0p,m (298.15 K) have been determined as (226.9±0.5) J·K−1·mol−1 and (103.4±0.2) J·K−1·mol−1, respectively. The values for {S0m (5.5 K)  S0m (0)} for DyBr3(s) and {S0m (4 K)  S0m (0)} for DyI3(s) have been calculated, giving S0m (298.15 K)=(212.3±0.9) J·K−1·mol−1 in case of DyBr3(s) and S0m (298.15 K) =(233.1±0.7) J·K−1·mol−1 for DyI3(s). The high-temperature enthalpy increment has been measured for DyBr3(s) in the temperature range (525 to 799 K) and for DyI3(s) in the temperature range (525 to 627 K). From the results obtained and enthalpies of formation from the literature, thermodynamic functions for DyBr3(s) and DyI3(s) have been calculated from T→0 to their melting temperatures at 1151.0 K and 1251.5 K, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号