首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cui and Lou (J Differ Equ 261:3305–3343, 2016) proposed a reaction–diffusion–advection SIS epidemic model in heterogeneous environments, and derived interesting results on the stability of the DFE (disease-free equilibrium) and the existence of EE (endemic equilibrium) under various conditions. In this paper, we are interested in the asymptotic profile of the EE (when it exists) in the three cases: (i) large advection; (ii) small diffusion of the susceptible population; (iii) small diffusion of the infected population. We prove that in case (i), the density of both the susceptible and infected populations concentrates only at the downstream behaving like a delta function; in case (ii), the density of the susceptible concentrates only at the downstream behaving like a delta function and the density of the infected vanishes on the entire habitat, and in case (iii), the density of the susceptible is positive while the density of the infected vanishes on the entire habitat. Our results show that in case (ii) and case (iii), the asymptotic profile is essentially different from that in the situation where no advection is present. As a consequence, we can conclude that the impact of advection on the spatial distribution of population densities is significant.  相似文献   

2.
The paper explores an eco‐epidemiological model of a predator–prey type, where the prey population is subject to infection. The model is basically a combination of S‐I type model and a Rosenzweig–MacArthur predator–prey model. The novelty of this contribution is to consider different competition coefficients within the prey population, which leads to the emergent carrying capacity. We explicitly separate the competition between non‐infected and infected individuals. This emergent carrying capacity is markedly different to the explicit carrying capacities that have been considered in many eco‐epidemiological models. We observed that different intra‐class and inter‐class competition can facilitate the coexistence of susceptible prey‐infected prey–predator, which is impossible for the case of the explicit carrying capacity model. We also show that these findings are closely associated with bi‐stability. The present system undergoes bi‐stability in two different scenarios: (a) bi‐stability between the planner equilibria where susceptible prey co‐exists with predator or infected prey and (b) bi‐stability between co‐existence equilibrium and the planner equilibrium where susceptible prey coexists with infected prey; have been discussed. The conditions for which the system is to be permanent and the global stability of the system around disease‐free equilibrium are worked out. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, an avian–human influenza epidemic model with diffusion, nonlocal delay and spatial homogeneous environment is investigated. This model describes the transmission of avian influenza among poultry, humans and environment. The behavior of positive solutions to a reaction–diffusion system with homogeneous Neumann boundary conditions is investigated. By means of linearization method and spectral analysis the local asymptotical stability is established. The global asymptotical stability for the poultry sub-system is studied by spectral analysis and by using a Lyapunov functional. For the full system, the global stability of the disease-free equilibrium is studied using the comparison Theorem for parabolic equations. Our result shows that the disease-free equilibrium is globally asymptotically stable, whenever the contact rate for the susceptible poultry is small. This suggests that the best policy to prevent the occurrence of an epidemic is not only to exterminate the asymptomatic poultry but also to reduce the contact rate between susceptible humans and the poultry environment. Numerical simulations are presented to illustrate the main results.  相似文献   

4.
We discuss the existence of positive solutions to certain strongly-coupled nonlinear elliptic systems with self-diffusions under homogeneous Dirichlet boundary conditions. Using the global positive coexistence results for predator–prey, competition and symbiotic interactions between two species, sufficient conditions for the positive solutions of the degenerate self-diffusive systems are studied. We also investigate the local behavior, namely, the local existence, uniqueness and stability, of positive solutions for predator–prey and competition interactions. Our method is based on the decoupling technique and bifurcation theory.  相似文献   

5.
The present paper deals with the problem of a classical predator–prey system with infection of prey population. A classical predator–prey system is split into three groups, namely susceptible prey, infected prey and predator. The relative removal rate of the susceptible prey due to infection is worked out. We observe the dynamical behaviour of this system around each of the equilibria and point out the exchange of stability. It is shown that local asymptotic stability of the system around the positive interior equilibrium ensures its global asymptotic stability. We prove that there is always a Hopf bifurcation for increasing transmission rate. To substantiate the analytical findings, numerical experiments have been carried out for hypothetical set of parameter values. Our analysis shows that there is a threshold level of infection below which all the three species will persist and above which the disease will be epidemic. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
An e-epidemic SIRS (susceptible–infectious–recovered–susceptible) model for the fuzzy transmission of worms in computer network is formulated. We have analyzed the comparison between classical basic reproduction number and fuzzy basic reproduction number, that is, when both coincide and when both differ. The three cases of epidemic control strategies of worms in the computer network–low, medium, and, high–are analyzed, which may help us to understand the attacking behavior and also may lead to control of worms. Numerical methods are employed to solve and simulate the system of equations developed.  相似文献   

7.
In pest control, there are only a few papers on mathematical models of the dynamics of microbial diseases. In this paper a model concerning biologically-based impulsive control strategy for pest control is formulated and analyzed. The paper shows that there exists a globally stable susceptible pest eradication periodic solution when the impulsive period is less than some critical value. Further, the conditions for the permanence of the system are given. In addition, there exists a unique positive periodic solution via bifurcation theory, which implies both the susceptible pest and the infective pest populations oscillate with a positive amplitude. In this case, the susceptible pest population is infected to the maximum extent while the infective pest population has little effect on the crops. When the unique positive periodic solution loses its stability, numerical simulation shows there is a characteristic sequence of bifurcations, leading to a chaotic dynamic, which implies that this model has more complex dynamics, including period-doubling bifurcation, chaos and strange attractors.  相似文献   

8.
In this paper, a non-autonomous stochastic Gilpin–Ayala competition model with jumps is studied. We show that this model has a unique global positive solution under certain conditions, and establish sufficient conditions for stochastic ultimate boundedness. Asymptotic behavior of stochastic Gilpin–Ayala competition model with jumps is also discussed. Numerical examples are introduced to illustrate the results.  相似文献   

9.
A diffusive epidemic model is investigated. This model describes the transmission of avian influenza among birds and humans. The behavior of positive solutions to a reaction-diffusion system with homogeneous Neumann boundary conditions are investigated. Sufficient conditions for the local and global asymptotical stability are given by spectral analysis and by using Lyapunov functional. Our result shows that the disease-free equilibrium is globally asymptotically stable, if the contact rate for the susceptible birds and the contact rate for the susceptible humans are small. It suggests that the best policy to prevent the occurrence of a pandemic is not only to exterminate the infected birds with avian influenza but also to reduce the contact rate for susceptible humans with the individuals infected with mutant avian influenza. Numerical simulations are presented to illustrate the main results.  相似文献   

10.
We consider driftless stochastic differential equations and the diffusions starting from the positive half line. It is shown that the Feller test for explosions gives a necessary and sufficient condition to hold pathwise uniqueness for diffusion coefficients that are positive and monotonically increasing or decreasing on the positive half line and the value at the origin is zero. Then, stability problems are studied from the aspect of Hölder-continuity and a generalized Nakao–Le Gall condition. Comparing the convergence rate of Hölder-continuous case, the sharpness and stability of the Nakao–Le Gall condition on Cantor stochastic differential equations are confirmed. Furthermore, using the Malliavin calculus, we construct a smooth solution to degenerate second order Fokker–Planck equations under weak conditions on the coefficients.  相似文献   

11.
We study the Gross–Pitaevskii equation involving a nonlocal interaction potential. Our aim is to give sufficient conditions that cover a variety of nonlocal interactions such that the associated Cauchy problem is globally well-posed with non-zero boundary condition at infinity, in any dimension. We focus on even potentials that are positive definite or positive tempered distributions.  相似文献   

12.
In this paper we study a nonlinear reaction–diffusion system which models an infectious disease caused by bacteria such as those for Cholera. One of the significant features in this model is that a certain portion of the recovered human hosts may lose a lifetime immunity and could be infected again. Another important feature in the model is that the mobility for each species is allowed to be dependent upon both the location and time. With the whole population assumed to be susceptible with the bacteria, the model is a strongly coupled nonlinear reaction–diffusion system. We prove that the nonlinear system has a unique solution globally in any space dimension under some natural conditions on the model parameters and the given data. Moreover, the long-time behavior and stability analysis for the solutions are carried out rigorously. In particular, we characterize the precise conditions on variable parameters about the stability or instability of all steady-state solutions. These new results provide the answers to several open questions raised in the literature.  相似文献   

13.
In the simulation of dynamical processes in economy, social sciences, biology or chemistry, the analyzed values often represent non-negative quantities like the amount of goods or individuals or the density of a chemical or biological species. Such systems are typically described by positive ordinary differential equations (ODEs) that have a non-negative solution for every non-negative initial value. Besides positivity, these processes often are subject to algebraic constraints that result from conservation laws, limitation of resources, or balance conditions and thus the models are differential-algebraic equations (DAEs). In this work, we present conditions under which both these properties, the positivity as well as the algebraic constraints, are preserved in the numerical simulation by Runge–Kutta or multistep discretization methods. Using a decomposition approach, we separate the dynamic and the algebraic equations of a given linear, positive DAE to give positivity preserving conditions for each part separately. For the dynamic part, we generalize the results for positive ODEs to DAEs using the solution representation via Drazin inverses. For the algebraic part, we use the consistency conditions of the discretization method to derive conditions under which this part of the approximation overestimates the exact solution and thus is non-negative. We analyze these conditions for some common Runge–Kutta and multistep methods and observe that for index-1 systems and stiffly accurate Runge–Kutta methods, positivity is conditionally preserved under similar conditions as for ODEs. For higher index problems, however, none of the common methods is suitable.  相似文献   

14.
We will prove an analogue of Landau?s necessary conditions [H.J. Landau, Necessary density conditions for sampling and interpolation of certain entire functions, Acta Math. 117 (1967) 37–52] for spaces of functions whose Hankel transform is supported in a measurable subset S of the positive semi-axis. As a special case, necessary density conditions for the existence of Fourier–Bessel frames are obtained.  相似文献   

15.
We consider the dynamics of a general stage-structured predator–prey model which generalizes several known predator–prey, SEIR, and virus dynamics models, assuming that the intrinsic growth rate of the prey, the predation rate, and the removal functions are given in an unspecified form. Using the Lyapunov method, we derive sufficient conditions for the local stability of the equilibria together with estimations of their respective domains of attraction, while observing that in several particular but important situations these conditions yield global stability results. The biological significance of these conditions is discussed and the existence of the positive steady state is also investigated.  相似文献   

16.
A spatial susceptible–infected–susceptible epidemic model with a free boundary, where infected individuals disperse non-uniformly, is investigated in this study. Spatial heterogeneity and movement of individuals are essential factors that affect pandemics and the eradication of infectious diseases. Our goal is to investigate the effect of a dispersal strategy for infected individuals, known as risk-induced dispersal (RID), which represents the motility of infected individuals induced by risk depending on whether they are in a high- or a low-risk region. We first construct the basic reproduction number and then understand the manner in which a nonuniform movement of infected individuals affects the spreading–vanishing dichotomy of a disease in a one-dimensional domain. We conclude that even though the infected individuals reside in a high-risk initial domain, the disease can be eradicated from the region if the infected individuals move with a high sensitivity of RID as they disperse. Finally, we demonstrate our results via simulations for a one-dimensional case.  相似文献   

17.
We consider a multiobjective optimization problem with a feasible set defined by inequality and equality constraints and a set constraint, where the objective and constraint functions are locally Lipschitz. Several constraint qualifications are given in such a way that they generalize the classical ones, when the functions are differentiable. The relationships between them are analyzed. Then, we establish strong Kuhn–Tucker necessary optimality conditions in terms of the Clarke subdifferentials such that the multipliers of the objective function are all positive. Furthermore, sufficient optimality conditions under generalized convexity assumptions are derived. Moreover, the concept of efficiency is used to formulate duality for nonsmooth multiobjective problems. Wolf and Mond–Weir type dual problems are formulated. We also establish the weak and strong duality theorems.  相似文献   

18.
In this paper we examine the global dynamics of the Kirschner–Panetta model describing the tumor immunotherapy. We give upper and lower ultimate bounds for densities of cell populations involved in this model. We demonstrate for this dynamics that there is a positively invariant polytope in the positive orthant. We present sufficient conditions on model parameters and treatment parameters under which all trajectories in the positive orthant tend to the tumor-free equilibrium point. We compare our results with Kirschner–Tsygvintsev results and concern biological implications of our assertions.  相似文献   

19.
In this paper we study a nonlocal reaction–diffusion–advection system modeling the growth of multiple competitive phytoplankton species in a vertical water column with incomplete mixing. We find that when the diffusion of the system is large, there is no positive steady states, and when the diffusion is not large, there exists at least one positive steady states under certain conditions. The main tools we use are the fixed point index theory, a refined comparison theorem and fine properties of the principal eigenvalues.  相似文献   

20.
In the present study, we propose and analyze a predator–prey system with disease in the predator population. To understand the role of cannibalism, we modify the model considering predator population is of cannibalistic type. Local and global stability around the biologically feasible equilibria are studied. The conditions for the persistence of the system are worked out. We also analyze and compare the community structure of the model systems with the help of ecological and disease basic reproduction numbers. Finally, through numerical simulation, we observe that inclusion of cannibalism in predator population may control the disease transmission in the susceptible predator population. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号