首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Catalytic activity of catalase (CAT) immobilized on a modified silicate matrix to mediate decomposition of meta-chloroperoxibenzoic acid (3-CPBA) in acetonitrile has been investigated by means of quantitative UV-spectrophotometry. Under the selected experimental conditions, the kinetic parameters: the apparent Michaelis constat (K M ), the apparent maximum rate of enzymatic reaction (V max app ), the first order specific rate constants (k sp ), the energy of activation (E a ) and the pre-exponential factor of the Arrhenius equation (Z0) were calculated. Conclusions regarding the rate-limiting step of the overall catalytic process were drawn from the calculated values of the Gibbs energy of activation ΔG*, the enthalpy of activation ΔH*, and the entropy of activation ΔS*.  相似文献   

2.
The kinetic parameters of the exothermic decomposition of the title compound in a temperatureprogrammed mode have been studied by means of DSC. The DSC data obtained are fitted to the integral, differential, and exothermic rate equations by the linear least-squares, iterative, combined dichotomous, and least-squares methods, respectively. After establishing the most probable general expression of differential and integral mechanism functions by the logical choice method, the corresponding values of the apparent activation energy (E a), preexponential factor (A), and reaction order (n) are obtained by the exothermic rate equation. The results show that the empirical kinetic model function in differential form and the values of E a and A of this reaction are (1 − α)−4.08, 149.95 kJ mol−1, and 1014.06 s−1, respectively. With the help of the heating rate and kinetic parameters obtained, the kinetic equation of the exothermic decomposition of the title compound is proposed. The critical temperature of thermal explosion of the compound is 155.71°C. The above-mentioned kinetic parameters are quite useful for analyzing and evaluating the stability and thermal explosion rule of the title compound. The text was submitted by the authors in English.  相似文献   

3.
The non-isothermal data given by TG curves for poly(3-hydroxybutyrate) (PHB) were studied in order to obtain a consistent kinetic model that better represents the PHB thermal decomposition. Thus, data obtained from the dynamic TG curves were suitably managed in order to obtain the Arrhenius kinetic parameter E according to the isoconversional F-W-O method. Once the E parameters is found, a suitable logA and kinetic model (f(α)) could be calculated. Hence, the kinetic triplet (E±SD, logA±SD and f(α)) obtained for the thermal decomposition of PHB under non-isothermal conditions was E=152±4 kJ mol−1, logA=14.1±0.2 s−1 for the kinetic model, and the autocatalytic model function was: f(α)=αm(1−α)n0.42(1−α)0.56.  相似文献   

4.
The present work revealed there was a conceptual difference in the thermal decomposition behaviors between the complexed β-cyclodextrin (CD) in an inclusion system and the β-CD complex of guest. The thermal decomposition behaviors of the solid inclusion complexes of β-CD with ethylenediamine (Eda), diethylenetriamine (Dta) and triethylamine (Tea) were investigated using nonisothermal thermogravimetry (TG) analysis based on weight loss as a function of temperature. In view of TG profiles, a consecutive mechanism describing the formation and thermal decomposition of the three solid supermolecules of β-CD was presented. Heating rate has very different effects on the thermal decomposition behaviors of these complexes. The faster the heating rate is, the higher the melting-decomposition point of the complexed β-CD in an inclusion system is, and on the whole the bigger the rate constant (k) of the thermal decomposition reaction of the complexed β-CD is. The thermal decomposition process of the complexed β-CD for each inclusion system is determined to be simple first-order reaction using Ozawa method. The apparent activation energies (E a) and frequency factors (A) of the thermal decomposition reactions of the complexed β-CD molecules have been also calculated. It is found that when the decomposition reaction of the complexed β-CD encountered a large value of E a, such as that in Dta–β-CD system, an apparent compensation effect of A on E a can provide enough energy to conquer the reaction barrier in prompting the k value of thermal decomposition reaction of the complexed β-CD according to Arrhenius equation.  相似文献   

5.
The mechanisms of the first two stages of the thermal decomposition of calcium oxalate monohydrate
have been established from non-isothermal thermogravimetric studies. For both stages, the rate-controlling processes are phase boundary reactions; the dehydration step assumes spherical symmetry whereas the decomposition step follows cylindrical symmetry. The kinetic parameters calculated from mechanistic equations show the same trend as those from mechanism-non-invoking equations. Thus, for the decomposition of CaC2O4 the kinetic parameters are not appreciably affected by heating rate or sample mass. For the dehydration step they show a systematic decrease with increase in either heating rate or sample mass. The best fit correlations can be expressed as follows E(or, log A) = (Constant/Heating rate) + Constant, (at fixed sample mass) E(or, log A) = (Constant) × (Mass)2 ? (Constant) × (Mass) + Constant, (at fixed heating rate)  相似文献   

6.
The constant-volume combustion energy, △cU (DADE, s, 298.15 K), the thermal behavior, and kinetics and mechanism of the exothermic decomposition reaction of 1,1-diamino-2,2-dinitroethylene (DADE) have been investigated by a precise rotating bomb calorimeter, TG-DTG, DSC, rapid-scan fourier transform infrared (RSFT-IR) spectroscopy and T-jump/FTIR, respectively. The value of △cHm (DADE, s, 298.15 K) was determined as (-8518.09±4.59) j·g^-1. Its standard enthalpy of combustion, △cU (DADE, s, 298.15 K), and standard enthalpy of formation, △fHm (DADE, s, 298.15 K) were calculated to be (-1254.00±0.68) and (- 103.98±0.73) kJ·mol^-1, respectively The kinetic parameters (the apparent activation energy Ea and pre-exponential factor A) of the first exothermic decomposition reaction in a temperature-programmed mode obtained by Kissinger's method and Ozawa's method, were Ek=344.35 kJ·mol^-1, AR= 1034.50 S^-1 and Eo=335.32 kJ·mol^-1, respectively. The critical temperatures of thermal explosion of DADE were 206.98 and 207.08 ℃ by different methods. Information was obtained on its thermolysis detected by RSFT-IR and T-jump/FTIR.  相似文献   

7.
The initial reaction rate (V 0) for the esterification reaction of feruloyl esterase (FAE-II) at different temperatures (288, 298, 308, 318, 328, 338, 348, and 358 K) and various ethyl ferulate concentrations [(2, 4, 6, 8, 10, 12, 14, and 16) × 10−4 mol l−1 of ethyl ferulate in water] were determined. The Lineweaver-Burk double reciprocal plot yielded the kinetic parameters (maximal velocity V max, Michaelis constant K m, and second order rate constant V/K). The effects of temperature on those 3 kinetic parameters were presented and discussed. The thermodynamic parameters ΔH* (enthalpy of activation), ΔG* (free energy of activation), ΔS* (entropy of activation), ΔG E-S (free energy change of substrate binding), ΔG E-T (free energy change of transition state formation), related to that biochemical process were determined and discussed from van’t Hoff plot, Arrhenius plot, and Eyring plot.  相似文献   

8.
We have determined the differences in the parameters log A and E of the Arrhenius equations for the kinetic isotope effect (KIE) (c-C6H12/c-C6D12) and the 5/6 effect (c-C5H10/c-C6H12) in reactions of the C—H bonds of cycloalkanes with adamantyl (Ad+) carbocations (1-adamantanol in 92.8% H2SO4, 40-97 °C). We have established the compensation relations between log A and E for the kinetic isotope effect and the 5/6 effect for anthracene (AH+), hydroxymethyl (CH2OH+), Ad+ carbocations and the hypothetical "infinitely strong reagent," supporting a hydride transfer mechanism in such reactions.  相似文献   

9.
3,3-Dinitroazetidinium (DNAZ) salt of perchloric acid (DNAZ·HClO4) was prepared, it was characterized by the elemental analysis, IR, NMR, and a X-ray diffractometer. The thermal behavior and decomposition reaction kinetics of DNAZ·HClO4 were investigated under a non-isothermal condition by DSC and TG/DTG techniques. The results show that the thermal decomposition process of DNAZ·HClO4 has two mass loss stages. The kinetic model function in differential form, the value of apparent activation energy (E a) and pre-exponential factor (A) of the exothermic decomposition reaction of DNAZ·HClO4 are f(α) = (1 − α)−1/2, 156.47 kJ mol−1, and 1015.12 s−1, respectively. The critical temperature of thermal explosion is 188.5 °C. The values of ΔS , ΔH , and ΔG of this reaction are 42.26 J mol−1 K−1, 154.44 kJ mol−1, and 135.42 kJ mol−1, respectively. The specific heat capacity of DNAZ·HClO4 was determined with a continuous C p mode of microcalorimeter. Using the relationship between C p and T and the thermal decomposition parameters, the time of the thermal decomposition from initiation to thermal explosion (adiabatic time-to-explosion) was evaluated as 14.2 s.  相似文献   

10.
Synthesis, characterization and thermal analysis of polyaniline (PANI)/ZrO2 composite and PANI was reported in our early work. In this present, the kinetic analysis of decomposition process for these two materials was performed under non-isothermal conditions. The activation energies were calculated through Friedman and Ozawa-Flynn-Wall methods, and the possible kinetic model functions have been estimated through the multiple linear regression method. The results show that the kinetic models for the decomposition process of PANI/ZrO2 composite and PANI are all D3, and the corresponding function is ƒ(α)=1.5(1−α)2/3[1−(1-α)1/3]−1. The correlated kinetic parameters are E a=112.7±9.2 kJ mol−1, lnA=13.9 and E a=81.8±5.6 kJ mol−1, lnA=8.8 for PANI/ZrO2 composite and PANI, respectively.  相似文献   

11.
The title compound 3,3-dinitroazetidinium (DNAZ) 3,5-dinitrosalicylate (3,5-DNSA) was prepared and the crystal structure has been determined by a four-circle X-ray diffractometer. The thermal behavior of the title compound was studied under a non-isothermal condition by DSC and TG/DTG techniques. The kinetic parameters were obtained from analysis of the TG curves by Kissinger method, Ozawa method, the differential method and the integral method. The kinetic model function in differential form and the value of E a and A of the decomposition reaction of the title compound are f(α)=4α3/4, 130.83 kJ mol−1 and 1013.80s−1, respectively. The critical temperature of thermal explosion of the title compound is 147.55 °C. The values of ΔS , ΔH and ΔG of this reaction are −1.35 J mol−1 K−1, 122.42 and 122.97 kJ mol−1, respectively. The specific heat capacity of the title compound was determined with a continuous C p mode of mircocalorimeter. Using the relationship between C p and T and the thermal decomposition parameters, the time of the thermal decomposition from initiation to thermal explosion (adiabatic time-to-explosion) was obtained.  相似文献   

12.
The temperature dependence of rate coefficient k is usually described by the Arrhenius expression ln k = ln A − (E/R)T −1. Chemical kinetics databases contain the recommended values of Arrhenius parameters A and E, the uncertainty parameter f (T) of the rate coefficient and temperature range of validity of this information. Taking ln k as a random variable with known normal distribution at two temperatures, the corresponding uncertainty of ln k at other temperatures was calculated. An algorithm is provided for the generation of the histogram of the transformed Arrhenius parameters ln A and E/R, which is in accordance with their 2D normal probability density function (pdf). The upper and the lower edges of the 1D normal distribution of ln k correspond to the two opposite edge regions of the 2D pdf of the transformed Arrhenius parameters. Changing the temperature, these edge regions move around the 2D cone. The rate parameters and uncertainty data belonging to reactions H + H2O2 = HO2 + H2 and O + HO2 = OH + O2 were used as examples.  相似文献   

13.
The influence of both light and heat on the stability of nitrofurazone aqueous solution was studied. Results show that in either heating experiments or the exposure to light at high temperatures, the degradation rate obeyed zero-order kinetics. The total rate constant ktotal caused by both light and heat can be divided into two parts: ktotal =kdark klight, where kdark and klight are the degradation rate constants caused by heat and light, respectively. The klight can be expressed as klight=Alight*exp(-Ea,light/RT)*E, where E is the illuminance of light, and Alight and Ea,light both are experimental constants. The values of these kinetic parameters were determined based on the experiments in the dark and upon exposure to three different light sources. Results show that the values of Alight and Ea, light varied with the light source. To save time, labor, and drugs, exponential heating experiments were employed and compared with the isothermal experiments. Results indicated that kinetic parameters obtained by exponential heating experiments are comparable to those obtained by isothermal experiments either in the dark or upon exposure to light.  相似文献   

14.
The two complexes of [Ln(CA)3bipy]2 (Ln = Tb and Dy; CA = cinnamate; bipy = 2,2′-bipyridine) were prepared and characterized by elemental analysis, infrared spectra, ultraviolet spectra, thermogravimetry and differential thermogravimetry techniques. The thermal decomposition behaviors of the two complexes under a static air atmosphere can be discussed by thermogravimetry and differential thermogravimetry and infrared spectra techniques. The non-isothermal kinetics was investigated by using a double equal-double steps method, the nonlinear integral isoconversional method and the Starink method. The mechanism functions of the first decomposition step of the two complexes were determined. The thermodynamic parameters (ΔH , ΔG and ΔS ) and kinetic parameters (activation energy E and the pre-exponential factor A) of the two complexes were also calculated.  相似文献   

15.
Devolatilization behavior of several types of agricultural stalks (sunflower, rice, corn, and wheat) was studied using thermogravimetric system (TG) under nitrogen atmosphere at different heating rates (10, 15, and 20 °C min-1). Coats&Redfern, Horowitz&Metzger, and Arrhenius non-isothermal kinetic models were applied to calculate the devolatilization kinetic parameters and the devolatilization rate equations have been established. In addition, the kinetic compensation effect (KCE) has also been used to correlate pre-exponential factor (k o) with activation energy (E a) and an existence of the KCE is accepted. TG-FT/IR analyses were applied of the different stalks and FT/IR stack plot used to analyze the devolatilization gas products (CO2, CH4, HCOOH, CH3OH). Infrared vibrational frequencies, micro structure and crystallinity of stalks were investigated by Fourier transform infrared spectroscopy (FT/IR), scanning electron microscope (SEM), and X-ray diffraction analysis (XRD), respectively.  相似文献   

16.
The complex of [Nd(BA)3bipy]2 (BA = benzoic acid; bipy = 2,2′-bipyridine) has been synthesized and characterized by elemental analysis, IR spectra, single crystal X-ray diffraction, and TG/DTG techniques. The crystal is monoclinic with space group P2(1)/n. The two–eight coordinated Nd3+ ions are linked together by four bridged BA ligands and each Nd3+ ion is further bonded to one chelated bidentate BA ligand and one 2,2′-bipyridine molecule. The thermal decomposition process of the title complex was discussed by TG/DTG and IR techniques. The non-isothermal kinetics was investigated by using double equal-double step method. The kinetic equation for the first stage can be expressed as dα/dt = A exp(−E/RT)(1 − α). The thermodynamic parameters (ΔH , ΔG , and ΔS ) and kinetic parameters (activation energy E and pre-exponential factor A) were also calculated.  相似文献   

17.
Photocatalytic decomposition of dispiro(diadamantane-1,2-dioxetane) (1) to adamantanone (2) initiated by Ce(ClO4)3 in the excited state in the MeCN−CHCl3 (2∶1) mixture was studied. The bimolecular rate constants of quenchingk q were determined from the kinetics of quenching of Ce3+* by dioxetane at different temperatures. The Arrhenius parameters of the quenching were calculated from the temperature dependence ofk q:E a=3.2±0.3 kcal mol−1 and logA=11.6±6. The quantum yields of photolysis of 1 depending on its concentration and the rate constant of the chemical reaction of Ce3+* with 1 were determined. The latter coincides withk q:k ch=(2.6±0.3)·109 L mol−1 s−1 (T=298 K). The fact that the maximum quantum yield of decomposition of dioxetane is equal to 1 indicates the absence of physical quenching of Ce3+* with 1. Nonradiative deactivation of Ce3+* in solutions of MeCN and in MeCN−CHCl3 mixtures was studied. It is caused by the replacement of H2O molecules in the nearest coordination surroundings of Ce3+ by solvent molecules and reversible transfer of an electron to the ligand. The activation parameters of the nonradiative deactivation of Ce+* were determined. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 724–729, April, 1997.  相似文献   

18.
The paper presents a non-isothermal kinetic study of the decomposition of Zn acetate-based gel precursors for ZnO thin films, based on the thermogravimetric (TG) data. The evaluation of the dependence of the activation energy (E) on the mass loss (Δm) using the isoconversional methods (Friedman (FR), Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS)) has been presented in a previous paper. It was obtained that the sample dried at 125°C for 8 h exhibits the activation energy independent on the heating rate for the second decomposition step. In this paper the invariant kinetic parameter (IKP) method is used for evaluating the invariant activation parameters, which were used for numerically evaluation of the function of conversion. The value of the invariant activation energy is in a good agreement with those determined by isoconversional methods. In order to determine the kinetic model, IKP method was associated with the criterion of coincidence of the kinetic parameters for all heating rates. Finally, the following kinetic triplet was obtained: E=91.7 (±0.1) kJ mol−1, lnA(s−1)=16.174 (±0.020) and F1 kinetic model.  相似文献   

19.
A closed oscillation system comprised of alanine, KBrO3, H2SO4 and acetone catalyzed by tetraazamacrocyclic nickel(II) complex is introduced, and quantitatively characterized with kinetic parameters, namely the rate constant (k in, k p), the apparent activation energy (E in, E p) and pre-exponential constant (A in, A p) and thermodynamic functions (ΔH in, ΔG in, ΔS in and ΔH p, ΔG p, ΔS p), where indexes “in” and “p” mean “induction period” and “oscillation period,” respectively. The results indicate that tetraazamacrocyclic nickel(II) complex can catalyze alanine oscillating reaction and the reaction corresponds exactly to the feature of irreversible thermodynamics as the entropy of system is negative.  相似文献   

20.
The isoconversional method suggested by Friedman and the invariant kinetic parameters method (IKP) were used in order to examine the kinetics of the nonisothermal crystallization of (GeS2)0.3(Sb2S3)0.7. The objective of the paper is to show the usefulness of the IKP method both for determining the activation parameters as well as the model of the investigated process. It was shown that the kinetic triplet [(E, A, f(α), where E is the activation energy, A is the preexponential factor, and f(α) is the differential function of conversion], which results through the application of the IKP method, depends on the set of kinetic models considered. For different sets of kinetic models, proportional values of f(α) are obtained. A criterion for the selection of this set, the use of which lead to the true kinetic triplet corresponding to the analyzed process (E = 163.2 kJ mol?1; A = 2.47 × 1012 min?1 and the Avrami‐Erofeev model, Am, for m = 2.5–2.6 was suggested. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 309–315, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号