首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Formed through cooperative self-assembly of amphiphilic diblock copolymers and electronically conjugated porphyrinic near-infrared (NIR) fluorophores (NIRFs), NIR-emissive polymersomes (50 nm to 50 microm diameter polymer vesicles) define a family of organic-based, soft-matter structures that are ideally suited for deep-tissue optical imaging and sensitive diagnostic applications. Here, we describe magic angle and polarized pump-probe spectroscopic experiments that: (i) probe polymersome structure and NIRF organization and (ii) connect emitter structural properties and NIRF loading with vesicle emissive output at the nanoscale. Within polymersome membrane environments, long polymer chains constrain ethyne-bridged oligo(porphinato)zinc(II) based supermolecular fluorophore (PZn n ) conformeric populations and disperse these PZn n species within the hydrophobic bilayer. Ultrafast excited-state transient absorption and anisotropy dynamical studies of NIR-emissive polymersomes, in which the PZn n fluorophore loading per nanoscale vesicle is varied between 0.1-10 mol %, enable the exploration of concentration-dependent mechanisms for nonradiative excited-state decay. These experiments correlate fluorophore structure with its gross spatial arrangement within specific nanodomains of these nanoparticles and reveal how compartmentalization of fluorophores within reduced effective dispersion volumes impacts bulk photophysical properties. As these factors play key roles in determining the energy transfer dynamics between dispersed fluorophores, this work underscores that strategies that modulate fluorophore and polymer structure to optimize dispersion volume in bilayered nanoscale vesicular environments will further enhance the emissive properties of these sensitive nanoscale probes.  相似文献   

2.
Hydroxy-functionalized polymersomes (or block copolymer vesicles) were prepared via a facile one-pot RAFT aqueous dispersion polymerization protocol and evaluated as Pickering emulsifiers for the stabilization of emulsions of n-dodecane emulsion droplets in water. Linear polymersomes produced polydisperse oil droplets with diameters of ~50 μm regardless of the polymersome concentration in the aqueous phase. Introducing an oil-soluble polymeric diisocyanate cross-linker into the oil phase prior to homogenization led to block copolymer microcapsules, as expected. However, TEM inspection of these microcapsules after an alcohol challenge revealed no evidence for polymersomes, suggesting these delicate nanostructures do not survive the high-shear emulsification process. Thus the emulsion droplets are stabilized by individual diblock copolymer chains, rather than polymersomes. Cross-linked polymersomes (prepared by the addition of ethylene glycol dimethacrylate as a third comonomer) also formed stable n-dodecane-in-water Pickering emulsions, as judged by optical and fluorescence microscopy. However, in this case the droplet diameter varied from 50 to 250 μm depending on the aqueous polymersome concentration. Moreover, diisocyanate cross-linking at the oil/water interface led to the formation of well-defined colloidosomes, as judged by TEM studies. Thus polymersomes can indeed stabilize colloidosomes, provided that they are sufficiently cross-linked to survive emulsification.  相似文献   

3.
Here, the formation of giant enzyme‐degradable polymersomes using the electroformation method is reported. Poly(ethylene glycol)‐block‐poly(ε‐caprolactone) polymersomes have been shown previously to be attractive candidates for the detection of bacterial proteases and protease mediated release of encapsulated reporter dyes and antimicrobials. To maximize the efficiency, the maximization of block copolymer (BCP) vesicle size without compromising their properties is of prime importance. Thus, the physical‐chemical properties of the BCP necessary to self‐assemble into polymeric vesicles by electroformation are first identified. Subsequently, the morphology of the self‐assembled structures is extensively characterized by different microscopy techniques. The vesicular structures are visualized for giant polymersomes by confocal laser scanning microscopy upon incorporation of reporter dyes during the self‐assembly process. Using time correlated single photon counting and by analyzing the fluorescence decay curves, the nanoenvironment of the encapsulated fluorophores is unveiled. Using this approach, the hollow core structure of the polymersomes is confirmed. Finally, the encapsulation of different dyes added during the electroformation process is studied. The results underline the potential of this approach for obtaining microcapsules for subsequent triggered release of signaling fluorophores or antimicrobially active cargo molecules that can be used for bacterial infection diagnostics and/or treatment.  相似文献   

4.
A bottom-up approach to fabricating monodisperse, two-component polymersomes that possess phase-separated (“patchy”) chemical topology is presented. This approach is compared with already-existing top-down preparation methods for patchy polymer vesicles, such as film rehydration. These findings demonstrate a bottom-up, solvent-switch self-assembly approach that produces a high yield of nanoparticles of the target size, morphology, and surface topology for drug delivery applications, in this case patchy polymersomes of a diameter of ≈50 nm. In addition, an image processing algorithm to automatically calculate polymersome size distributions from transmission electron microscope images based on a series of pre-processing steps, image segmentation, and round object identification is presented.  相似文献   

5.
Despite biological variability the spectral characteristics of undiluted human urine show relatively low autofluorescence at short UV (250-300 nm) excitation. However with dilution the fluorescence intensity remarkably increases. This paper examines the mechanisms behind this effect, by using excitation-emission matrices. Corrections for the inner filter effect were made for improved understanding of the spectral patterns. We focused on three major fluorophores (tryptophan, indoxyl sulfate and 5-hydroxyindole-3-acetate) that are excited at these wavelengths, and whose content in urine is strongly linked with various health conditions. Their fluorescence was studied both individually and in combinations. We also examined the effect of ammonium on the fluorescence of these major fluorophores individually and in combinations. Through these studies we have identified the leading effects that reduce the UV fluorescence, namely higher concentration of indoxyl sulfate producing the inner filter effect and concentration quenching and quenching of fluorophores by ammonium. This result will assist in broader utilisation of UV fluorescence in medical diagnostics.  相似文献   

6.
Previously, it was found that extruded (200 nm) polymer vesicles are capable of fusion into giant polymersomes using agitation in the presence of salt. In this study, several factors contributing to this phenomenon, including the effects of (i) polymer vesicle concentration, (ii) agitation speed and duration, and (iii) variation of the salt and its concentration are investigated. To accomplish these goals dynamic light scattering is used in conjunction with fluorescence microscopy, which provides insight into vesicles above the practical limit for DLS characterization. Increasing the concentration of the polymer dramatically increases the production of giant vesicles through the increased collisions of polymersomes. Likewise, increasing the frequency of agitation increases the efficiency of fusion, although ultimately the size of vesicle that could be produced is limited due to the high shear involved. Finally, salt‐mediation of the fusion process was not limited to NaCl, but is instead a general effect facilitated by the presence of solvated ionic compounds, albeit with different salts initiating fusion at different concentrations. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 297–303  相似文献   

7.
We report the formation of polymer vesicles (or polymersomes) by a new class of amphiphilic block copolymers in which the hydrophobic block is a side-on nematic liquid crystal polymer. Two series of these block copolymers, named PEG-b-PA444 and PEG-b-PMAazo444, with different hydrophilic/hydrophobic ratios were synthesized and characterized in detail. Polymersomes and nanotubes were formed by adding water into a solution of copolymers in dioxane. Polymersomes in water were finally obtained by dialyzing the resulting mixture against water. These self-assemblies have been studied by classical TEM and cryo-TEM. For the PEG-b-PA444 series, polymersomes were observed for hydrophilic/hydrophobic ratios ranging from 40/60 to 19/81. For PEG-b-PMAazo444 series, polymersomes were observed for hydrophilic/hydrophobic ratios ranging from 26/74 to 18/82. For a PEG-b-PA444 sample with hydrophilic/hydrophobic ratio equal to 25/75, a tubular morphology with tube diameter of typically 100 nm and tube length of up to 10 mum was also observed together with polymersomes during addition of water into the polymer solution in dioxane.  相似文献   

8.
In vivo and ex vivo studies of fluorescence from endogenous and exogenous molecules in tissues and cells are common for applications such as detection or characterization of early disease. A systematic determination of the excitation-emission matrices (EEM) of known and putative endogenous fluorophores and a number of exogenous fluorescent photodynamic therapy drugs has been performed in solution. The excitation wavelength range was 250-520 nm, with fluorescence emission spectra collected in the range 260-750 nm. In addition, EEM of intact normal and adenomatous human colon tissues are presented as an example of the relationship to the EEM of constituent fluorophores and illustrating the effects of tissue chromophore absorption. As a means to make this large quantity of spectral data generally available, an interactive database has been developed. This currently includes EEM and also absorption spectra of 35 different endogenous and exogenous fluorophores and chromophores and six photosensitizing agents. It is intended to maintain and extend this database in the public domain, accessible through the Photochemistry and Photobiology website (http://www.aspjournal. com/).  相似文献   

9.
We have demonstrated the installation of a fluorescence property into a nonfluorescent precursor and modulation of an emission response of a pyrene fluorophore via click reaction. The synthesized fluorophores show different solvatochromicity and/or intramolecular charge transfer (ICT) feature as is revealed from the UV-visible, fluorescence photophysical properties of these fluorophores, and DFT/TDDFT calculation. We observed that some of the synthesized fluorophores showed purely ICT character while emission from some of them arose from the LE state. A structureless and solvent polarity-sensitive dual emission behavior was observed for one of the triazolylpyrene fluorophores that contains an electron-donating -NMe(2) substituent (fluorophore, 7a). Conversely, triazolylpyrene with an electron-withdrawing -CN group (fluorophore, 7b) showed a solvent polarity-independent vibronic emission. The effect of ICT on the photophysical properties of these fluorophores was studied by fluorescence emission spectra and DFT/TDDFT calculations. Fluorescence lifetimes were also measured in different solvents. All of our findings revealed the delicate interplay of structure and emission properties and thus having broader general utility. As the CT to LE intensity ratio can be employed as a sensing index, the dual emissive fluorophore can be utilized in designing the molecular recognition system too. We envisage that our investigation is of importance for the development of new fluorophores with predetermined photophysical properties that may find a wide range of applications in chemistry, biology, and material sciences.  相似文献   

10.
Developing molecular fluorophores with enhanced fluorescence in aggregate state for the second near-infrared (NIR-II) imaging is highly desirable but remains a tremendous challenge due to the lack of reliable design guidelines. Herein, we report an aromatic substituent strategy to construct highly bright NIR-II J-aggregates. Introduction of electron-withdrawing substituents at 3,5-aryl and meso positions of classic boron dipyrromethene (BODIPY) skeleton can promote slip-stacked J-type arrangement and further boost NIR-II fluorescence of J-aggregates via increased electrostatic repulsion and intermolecular hydrogen bond interaction. Notably, NOBDP-NO2 with three nitro groups (−NO2) shows intense NIR-II fluorescence at 1065 nm and high absolute quantum yield of 3.21 % in solid state, which can be successfully applied in bioimaging, high-level encoding encryption, and information storage. Moreover, guided by this electron-withdrawing substituent strategy, other skeletons (thieno-fused BODIPY, aza-BODIPY, and heptamethine cyanine) modified with −NO2 are converted into J-type aggregates with enhanced NIR-II fluorescence, showing great potential to convert aggregation caused emission quenching (ACQ) dyes into brilliant J-aggregates. This study provides a universal method for construction of strong NIR-II emissive J-aggregates by rationally manipulating molecular packing and establishing relationships among molecular structures, intermolecular interactions, and fluorescence properties.  相似文献   

11.
《中国化学快报》2023,34(4):107674
Based on the coumarin skeleton, we deliberately designed two groups of fluorophores, termed as Coum-R and Naph-Coum-R, using the diphenylamino group as the electron donor, which displayed long-wavelength emissions (red spectral region), large Stokes shift (up to 204 nm), superior AIE performance, and large two-photon absorbance cross-sections (as high as 365 GM). The electron-withdrawing substituents at the 3-position of these dyes could induce a significant red-shift in their emission spectra. Preliminary imaging experiments demonstrated the capability of these dyes as two-photon fluorophores for specifically staining lipid droplets in living cells.  相似文献   

12.
Bioorthogonal turn‐on probes have been widely utilized in visualizing various biological processes. Most of the currently available bioorthogonal turn‐on probes are blue or green emissive fluorophores with azide or tetrazine as functional groups. Herein, we present an alternative strategy of designing bioorthogonal turn‐on probes based on red‐emissive fluorogens with aggregation‐induced emission characteristics (AIEgens). The probe is water soluble and non‐fluorescent due to the dissipation of energy through free molecular motion of the AIEgen, but the fluorescence is immediately turned on upon click reaction with azide‐functionalized glycans on cancer cell surface. The fluorescence turn‐on is ascribed to the restriction of molecular motion of AIEgen, which populates the radiative decay channel. Moreover, the AIEgen can generate reactive oxygen species (ROS) upon visible light (λ=400–700 nm) irradiation, demonstrating its dual role as an imaging and phototherapeutic agent.  相似文献   

13.
The photophysical properties of a Keggin‐type polyoxometalate (POM) covalently bounded to a benzospiropyran (BSPR) unit have been investigated. These studies reveal that both closed and open forms are emissive with distinct spectral features (λ em (closed form)=530 nm, λ em (open form)=670 nm) and that the fluorescence of the BSPR unit of the hybrid is considerably enhanced compared to BSPR parent compounds. While the fluorescence excitation energy of the BSPR reference compounds (370 nm) is close to the intense absorption responsible of the photochromic character (350 nm), the fluorescence excitation of the hybrid is shifted to lower energy (400 nm), improving the population of the emissive state. Combined NOESY NMR and theoretical calculations of the closed form of the hybrid give an intimate understanding of the conformation adopted by the hybrid and show that the nitroaryl moieties of the BSPR is folded toward the POM, which should affect the electronic properties of the BSPR.  相似文献   

14.
A prototype angioscopy system with fluorescence lifetime imaging microscopy (FLIM) capabilities was built and applied for biochemical imaging of human coronary atherosclerotic plaques. The FLIM angioscopy prototype consisted of a thin flexible angioscope suitable for UV-excited autofluorescence imaging, and a FLIM detection system based on a pulse sampling approach. The angioscope was composed of an imaging bundle attached to a gradient index objective lens and surrounded by a ring of illumination fibers (2 mm outer diameter, 50 μm spatial resolution). For FLIM detection based on the pulse sampling approach, a gated-intensified charge-couple device camera (200 ps temporal resolution) was used. Autofluorescence was excited with a pulsed UV laser (337 nm) and FLIM images were acquired at three emission bands (390/40 nm, 450/40 nm, 550/88 nm). The system was characterized on standard fluorophores and then used to image postmortem human coronary arteries. The FLIM angioscope allowed us to distinguish elastin-dominant plaques (peak emission at 450 nm, ∼1.5 ns lifetimes) from collagen-dominant plaques (peak emission at 390 n, ∼2–3 ns lifetimes) based on their intrinsic fluorescence spectral and lifetime differences. This study demonstrates the potential of FLIM angioscopy for biochemical imaging of human coronary atherosclerotic plaques.  相似文献   

15.
Poly(dimethylsiloxane)-block-poly(2-methyloxazoline) (PDMS-b-PMOXA) vesicles were characterized by a combination of dynamic light scattering (DLS), cryogenic transmission electron microscopy (cryo-TEM), and atomic force microscopy imaging and force spectroscopy (AFM). From DLS data, a hydrodynamic radius of ~150 nm was determined, and cryo-TEM micrographs revealed a bilayer thickness of ~16 nm. In AFM experiments on a silicon wafer substrate, adsorption led to a stable spherical caplike conformation of the polymersomes, whereas on mica, adsorption resulted also in vesicle fusion and formation of bilayer patches or multilayer stacks. This indicates a delicate balance between the mechanical stability of PDMS-b-PMOXA polymersomes on one hand and the driving forces for spreading on the other. A Young's modulus of 17 ± 11 MPa and a bending modulus of 7 ± 5 × 10(-18) J were derived from AFM force spectroscopy measurements. Therefore, the elastic response of the PDMS-b-PMOXA polymersomes to external stimuli is much closer to that of lipid vesicles compared to other types of polymersomes, such as polystyrene-block-poly(acrylic acid) (PS-b-PAA).  相似文献   

16.
We have shown that the ICT fluorophores with longer alkyl substituents at the amino nitrogen atom of p-aminobenzoic acid, p-hexyl, methylaminobenzoic acid (HMABOA) and p-hexyl,ethylaminobenzoic acid (HEABOA), bind more strongly to CTAB and CTAC micelles and in CTAC micelle these fluorophores show higher ICT to LE fluorescence intensity ratio.  相似文献   

17.
自从O Connell等[1]报道苯甲酰苯胺(BA)在EPA玻璃体中异常的长波长荧光发射特性以来, 已有众多学者尝试解释该"异常"荧光的发射态性质[2~12]. Kasha等[2~7]认为长波长荧光是质子转移(PT)和电荷转移(CT)两种激发态发射的叠加, 而Azumaya等[8]则认为发射态只包含分子内扭转电荷转移(TICT)态. 应该指出的是, 在上述研究中, 电荷转移态的指认并无有力的实验事实, 而主要是依据与具有CT双重荧光的对二甲氨基苯甲氰[13,14]的类比. 显然, 有关苯甲酰苯胺的长波长荧光发射态的准确性质仍待实验阐明  相似文献   

18.
A general method for the synthesis of difluorobora-diisoindolomethene dyes with phenyl, p-anisole, or ethyl-thiophene substituents has been developed. The nature of the substituents allows modulation of the fluorescence from 650 to 780 nm. Replacement of the fluoro ligands by ethynyl-aryl or ethyl residues is facile using Grignard reagents. Several X-ray molecular structures have been determined, allowing establishment of structure-fluorescence relationships. When the steric crowding around the boron center is severe, the aromatic substituents α to the diisoindolomethene nitrogens are twisted out of coplanarity, and hypsochromic shifts are observed in the absorption and emission spectra. This shift reached 91 nm with ethyl substituents compared to fluoro groups. When ethynyl linkers are used, the core remains flat, and a bathochromic shift is observed. All the fluorophores exhibit relatively high quantum yields for emitters in the 650-800 nm region. When perylene or pyrene residues are connected to the dyes, almost quantitative energy transfer from them to the dye core occurs, providing large virtual Stokes shifts spanning from 8000 to 13,000 cm(-1) depending on the nature of the dye. All the dyes are redox active, providing the Bodipy radical cation and anion in a reversible manner. Stepwise reduction or oxidation to the dication and dianion is feasible at higher potentials. We contend that the present work paves the way for the development of a new generation of stable, functionalized luminophores for bioanalytical applications.  相似文献   

19.
Large (200 nm) poly(ethylene oxide)‐b‐poly(butadiene) polymer vesicles fuse into giant (>1 μm) vesicles with mild agitation in dilute aqueous NaCl solutions. This unusual effect is attributed to the salt‐induced contraction of the poly(ethylene oxide) corona, reducing steric resistance between vesicles and, with agitation, increasing the probability of contact between the hydrophobic cores of adjacent membranes. In addition, NaCl and agitation facilitated the creation of giant hybrid vesicles from much smaller homogeneous polymersomes and liposomes. Whereas lipid vesicles do not readily fuse with each other under the same circumstances, they did fuse with polymersomes to produce hybrid polymer/lipid vesicles.  相似文献   

20.
The emission spectra of single lipofuscin granules are examined using spectrally resolved confocal microscopy and near-field scanning optical microscopy (NSOM). The emission spectrum varies among the granules examined revealing that individual granules are characterized by different distributions of fluorophores. The range of spectra observed is consistent with in vivo spectra of human retinal pigment epithelium cells. NSOM measurements reveal that the shape of the spectrum does not vary with position within the emissive regions of single lipofuscin granules. These results suggest that the relative distribution of fluorophores within the emissive regions of an individual granule is homogeneous on the spatial scale approximately 150 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号