首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

A novel quantum group proxy blind signature scheme based on five-qubit entangled state is proposed. The quantum key distribution, quantum encryption algorithm and some laws of quantum mechanics (such as quantum no-cloning theorem and Heisenberg uncertainty principle) are used to guarantee the unconditional security of this scheme. Analysis result shows that the signature can neither be forged nor disavowed by any malicious attackers and our scheme satisfies all the characteristics of group signature and proxy signature. This protocol can be applied in real life such as E-commerce transaction.

  相似文献   

2.

Digital signature plays an important role in cryptography. Many quantum digital signature (QDS) schemes have been proposed up to now since the security of classic digital signature (CDS) schemes becomes more and more vulnerable with the development of quantum computing algorithms. Most of the existing quantum signature schemes are based on probabilistic comparison of quantum states, which makes the schemes very complicated. In this paper, we propose a new QDS scheme based on local indistinguishability of orthogonal product states. In the scheme, the receiver cooperates with the arbitrator to verify the valid of the signature. The analysis of security and efficiency shows that our scheme is secure and efficient.

  相似文献   

3.

Recently, a quantum broadcasting multiple blind signature scheme has been proposed by using GHZ entanglement, which is claimed to have foreseeable application in E-bank system. However, its security is promised by the utilized hash function. In this paper, we have designed a novel quantum broadcasting multiple blind signature scheme by utilizing a three-particle partial entanglement state. In existed quantum broadcasting multiple blind signature schemes, the collector Charlie has to verify the individual signatures before aggregating them into a multi-signature. In this new scheme, Charlie is only acting as a signature collector. Specifically, Charlie only needs to collect all the individual signatures and aggregating them into a multi-signature, which indicates that Charlie has no need to verify the individual signature any more. All the verification are executed by the receiver Bob himself. Meanwhile, the signature is generated by quantum entanglement swapping rather than using hash function, which make its security is only based on quantum physics. It is showed that multi-particle partially entangled state can be efficiently used as a resource in quantum information processing with perfect performance.

  相似文献   

4.

A new quantum bi-signature scheme based on GHZ states and W states is proposed. In the proposed scheme, Alice and Bob sign one same message and send their signatures to Charlie. Different from some typical quantum signature schemes, the new quantum bi-signature scheme firstly sets up a secure channel and the three parties verify each other with the correlation of GHZ states. Then Alice, Bob and Charlie utilize the measurement outcomes of W states to implement signature and verification. The proposed scheme without any key converts the message with quantum one-way function to improve the security. The new quantum bi-signature scheme can solve the most issues of two-way choice in real life, and analysis results show that the proposed scheme is secure and efficient. Furthermore, the proposed scheme can be implemented with the existing physical technologies.

  相似文献   

5.

Based on the asymmetric quantum cryptosystem, a new public-key quantum signature scheme is proposed. In our scheme, the signer’s public key is derived from her public identity information, and the corresponding private key is generated by the trusted private key generator (PKG). Both of the public key and the private key are classical bit strings, so they are easily kept. It is very convenient for the key management of the quantum signature system. The signer signs a message with her private key, and the quantum signature can be publicly verified with the signer’s public key and the quantum one-way function. Both of the private key and public key can be reused. On the other hand, in the signing phase, the signer sends the message to PKG via a classical unencrypted channel, which can be used to authenticate the identity of the signer. The proposed scheme has the properties of completeness, information-theoretic security, non-repudiation and unforgeability. Its information-theoretic security is ensured by quantum indistinguishability mechanics. On the other hand, our scheme is more efficient than the similar schemes.

  相似文献   

6.
In this paper, we find a man-in-the-middle attack on the quantum signature scheme with a weak arbitrator (Luo et al., Int. J. Theor. Phys., 51:2135, 2012). In that scheme, the authors proposed a quantum signature based on quantum one way function which contains both verifying the signer phase and verifying the signed message phase. However, after our analysis we will show that Eve can adopt different strategies in respective phases to forge the signature without being detected. Then we present an improved scheme to increase the security.  相似文献   

7.
A blind quantum signature scheme with χ-type entangled states is proposed, which can be applied to E-voting system. In this scheme, the particles in χ-type state sequence are used for quantum key distribution first, and then for quantum signature. Our scheme is characterized by its blindness, impossibility of forgery, impossibility of disavowal. In addition, our scheme can perform an audit program with respect to the validity of the verification process in the light of actual requirements. The security of the scheme is also analyzed.  相似文献   

8.
A novel (t,n)-threshold scheme for the multi-party quantum group signature is proposed based on the irregular quantum Fourier transform, in which every t-qubit quantum message needs n participants to generate the quantum group signature. All the quantum operation gates in the quantum circuit can be distributed and arranged randomly in the irregular QFT algorithm, which can increase the von Neumann entropy of the signed quantum message and the randomicity of the quantum signature generation significantly. The generation and verification of the quantum group signature can be both performed in quantum circuits with the parallel algorithm. Security analysis shows that an available and legal quantum (t,n)-threshold group signature can be achieved.  相似文献   

9.
Improvement of a quantum proxy blind signature scheme is proposed in this paper. Six-qubit entangled state functions as quantum channel. In our scheme, a trust party Trent is introduced so as to avoid David’s dishonest behavior. The receiver David verifies the signature with the help of Trent in our scheme. The scheme uses the physical characteristics of quantum mechanics to implement message blinding, delegation, signature and verification. Security analysis proves that our scheme has the properties of undeniability, unforgeability, anonymity and can resist some common attacks.  相似文献   

10.
In this paper, a quantum proxy blind signature scheme based on controlled quantum teleportation is proposed. This scheme uses a genuine five-qubit entangled state as quantum channel and adopts the classical Vernam algorithm to blind message. We use the physical characteristics of quantum mechanics to implement delegation, signature and verification. Security analysis shows that our scheme is valid and satisfy the properties of a proxy blind signature, such as blindness, verifiability, unforgeability, undeniability.  相似文献   

11.
Very recently, a quantum signature scheme with weak arbitrator was presented (Luo et al. in Int. J. Theor. Phys. 51:2135–2142, 2012). A weak arbitrator is only involved in the disagreement case, which means that the scheme is costless. In this paper, the security of the quantum signature scheme with weak arbitrator is analyzed. We show that attackers can counterfeit a signature for any message, which will pass the verification for the signer. In addition, they can counterfeit a signature for any one of the 4 L (L is the length of the intercepted quantum message) messages by employing the known message attack, which will pass the verification for the signed message. In particular, by employing the Z-transform attack, the attackers can forge a signature for any one of the 2 L messages, which will pass the verifications for both the signer and the signed message successfully.  相似文献   

12.
In this paper we propose a quantum group blind signature scheme designed for distributed e-voting system. Our scheme combines the properties of group signature and blind signature to provide anonymity of voters in an e-voting system. The unconditional security of our scheme is ensured by quantum mechanics. Without employing entanglement, the proposed scheme is easier to be realized comparing with other quantum signature schemes.  相似文献   

13.
A multi-proxy strong blind quantum signature scheme is proposed in this paper. An original signatory Alice delegates her signing authority to a group of proxy signatories by using a classical warrant. A blind factor is introduced by a sender U to blind a message, and the proxy signatories sign the message blindly via applying appropriate unitary operators. A receiver Bob verifies the generated signature with the help of an arbitrator Trent. The security of this scheme is based on a quantum key distribution protocol, a quantum one-time pad and other quantum properties. It is proved that our scheme has the properties of non-disavowal, non-counterfeit, multi-proxy, blindness, untraceability and can resist some common attacks.  相似文献   

14.
In this paper, we propose a multi-proxy blind signature scheme based on controlled teleportation. Genuine four-qubit entangled state functions as quantum channel. The scheme uses the physical characteristics of quantum mechanics to implement delegation, signature and verification. The security analysis shows the scheme satisfies the security features of multi-proxy signature, unforgeability, undeniability, blindness and unconditional security.  相似文献   

15.
Several quantum signature schemes are recently proposed to realize secure signatures of quantum or classical messages. Arbitrated quantum signature as one nontrivial scheme has attracted great interests because of its usefulness and efficiency. Unfortunately, previous schemes cannot against Trojan horse attack and Do S attack and lack of the unforgeability and the non-repudiation. In this paper, we propose an improved arbitrated quantum signature to address these secure issues with the honesty arbitrator. Our scheme takes use of qubit states not entanglements. More importantly, the qubit scheme can achieve the unforgeability and the non-repudiation. Our scheme is also secure for other known quantum attacks.  相似文献   

16.
In this paper, we propose a choreographed distributed electronic voting scheme, which is based on quantum group blind signature. Our distributed electronic voting scheme could really protect the message owner’s privacy and anonymity which the classical electronic voting systems can not provide. The electors can exercise their voting rights effectively, and no one other than the tallyman Bob knows the contents of his vote. Moreover, we use quantum key distribution protocol and quantum one-time pad to guarantee its unconditional security. Furthermore, when there was a dispute, the group supervisor David can detect the source of the signature based on the signature’s serial number \(SN\).  相似文献   

17.
<正>In this paper an arbitrated quantum signature scheme based on entanglement swapping is proposed.In this scheme a message to be signed is coded with unitary operators.Combining quantum measurement with quantum encryption, the signer can generate the signature for a given message.Combining the entangled states generated by the TTP’s Bell measurement with the signature information,the verifier can verify the authentication of a signature through a single quantum state measurement.Compared with previous schemes,our scheme is more efficient and less complex, furthermore,our scheme can ensure the anonymity of the signer.  相似文献   

18.
In 2014, Liu et al. (In. J. Thero. phys. 53(5); 1569–1579. 2014) proposed an arbitrated quantum signature scheme (Liu’14) with Bell states by utilizing a new quantum one-time pad algorithm. It claimed that it can resist the receiver’s existential forgery attack and no party has chances to change the message and its signature without being discovered. Recently, Xu and Zou (In. J. Thero. phys. 55; 4142-4156. 2016) analyzed above scheme and demonstrated that it can’t resist the signer’s disavowal and the receiver’s existential forgery. But, the authors didn’t give a method to solve it. In this paper, we will give an improved arbitrated quantum signature scheme to make up the loopholes in Liu’14.  相似文献   

19.
In this paper, a multi-proxy blind signature scheme based on controlled quantum teleportation is proposed. Entangled four-qubit Cluster state functions as quantum channel, which needs less resource to complete the quantum multi-proxy blind signature. The scheme uses the physical characteristics of quantum mechanics to guarantee its blindness, unforgeability, and undeniability. The eavesdropping check is used to ensure the security. Our scheme has a foreseeable application to the E-business, E-governments, and etc.  相似文献   

20.
In this paper a very efficient and secure proxy signature scheme is proposed. It is based on controlled quantum teleportation. Genuine five-qubit entangled state functions as quantum channel. The scheme uses the physical characteristics of quantum mechanics to implement delegation, signature and verification. Quantum key distribution and one-time pad are adopted in our scheme, which could guarantee not only the unconditional security of the scheme but also the anonymity of the messages owner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号