首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Magnetic baker’s yeast (MB) was prepared using glutaraldehyde cross-linking method and chemical modification with ethylenediaminetetraacetic dianhydride (EDTAD). The fabricated EDTAD-modified magnetic baker’s yeast (EMB) was then employed to remove methylene blue. Comparative adsorption of methylene blue by EMB and MB was systematically investigated with respect to pH, contact time, initial concentration and reaction temperature. The mechanism of methylene blue adsorption by EMB and MB was investigated by SEM, FTIR and Special surface area using methylene blue method. The results revealed that Fe3O4 nanoparticles were steadily cross-linked/incorporated with baker’s yeast biomass and the EDTA was modified on the surface of the magnetic baker’s yeast. The equilibrium adsorption data were fitted better by Langmuir isotherm, and the specific surface areas were 42.953–226.07 m2/g for MB and 94.972–499.85 m2/g for EMB, respectively. Kinetic studies suggested that the pseudo-second-order model was suitable to describe the adsorption process. Thermodynamic studies indicated that the adsorption was feasible, spontaneous and endothermic. The recovery efficiencies were above 80% by using 0.1 M HCl.  相似文献   

2.
Narrow-disperse magnetic microspheres were prepared by alkaline coprecipitation of Fe2+ and Fe3+ ions within poly(acrylic acid–divinylbenzene) microspheres that were prepared by distillation–precipitation copolymerization. Magnetic microspheres with polymer brushes that contain epoxy groups were prepared by graft copolymerization of glycidyl methacrylate and glycerol monomethacrylate via atom transfer radical polymerization (ATRP) from the magnetic microsphere surfaces. Subsequently, magnetic microspheres with thiol-containing polymer brushes were prepared by treating the epoxy group-containing magnetic microspheres with sodium hydrosulfide. Gold nanoparticles were immobilized in the brush layer of the thiol-containing magnetic microspheres through Au–S coordination. The catalytic activity of the gold nanoparticle-immobilized magnetic microspheres was investigated using the reduction of 4-nitrophenol to 4-aminophenol with sodium borohydride as a model reaction. The catalyst could be reused for over 10 cycles without noticeable loss of catalytic activity.  相似文献   

3.
采用水热法制备铜/石墨烯(Cu/RGO)复合材料,通过XRD、FTIR、SEM和TEM对材料的结构和形貌进行表征,并考察了复合材料在H2O2辅助作用下对次甲基蓝(MB)的催化作用。结果表明,该复合材料中石墨烯所负载的铜颗粒尺寸较小且分布均一,对MB的催化效果良好,0.18 g·L-1复合催化剂在300 min内对MB的脱色效果可达90.7%,经过5次循环仍有88.0%以上。  相似文献   

4.
In this study, a unique magnetic, pH, and thermo‐responsive hydrogel nanocomposite was synthesized via surface reversible addition fragmentation chain transfer (RAFT) copolymerization of acrylic acid (AA) and N‐isopropyl acrylamide (NIPAM) in the presence of magnetic β‐cyclodextrin (β‐CD). The nanocomposite demonstrated a pH‐responsiveness behavior at pHs 3 and 9. Moreover, swelling behaviors of nanocomposite were measured in solutions with various temperatures. Furthermore, the nanocomposites exhibited high swelling capacity by applying an external magnetic field because of the presence of Fe3O4 nanoparticles in the polymer structure. Besides, the doxorubicin (DOX) loading and releasing behaviors of the hydrogel nanocomposites were studied because of the stimuli‐responsive properties of the synthesized carriers. The adsorption of DOX obeyed a pseudo‐second‐order model and fitted well to the Langmuir isotherm model with the maximum adsorption capacity uptake of 291 mg g?1. In conclusion, the hydrogel nanocomposites were found to be as potential nanocarriers for use in controlled release applications.  相似文献   

5.
A novel photocatalytically degradable TiO2/poly[acrylamide-co-(acrylic acid)] composite hydrogel (TiO2/poly[AAm-co-AAc]) was synthesized by polymerization in an aqueous solution with N,N’-methylenebisacrylamide as the crosslinker and ammonium persulphate and TEMED as the initiator pair. The combined and separate effects of photodegradation and adsorption processes for dye removal were evaluated using methylene blue (MB) as the model dye for a photodegradation target, and compared with those of the neat poly[AAm-co-AAc], and a commercially available TiO2 photocatalyst (Degussa P-25). Without photodegradation (i.e. in the dark), the TiO2/poly[AAm-co-AAc] composite adsorbed up to 85% of the MB from a 5 mg L−1 MB solution in 15 min compared to only 10% for the pristine TiO2. The reproducibility in photodegradation of the reused poly[AAm-co-AAc] composite was also investigated, where poly[AAm-co-AAc] was found to be photocatalytically degraded under UV irradiation. Therefore, the TiO2/poly[AAm-co-AAc] composite hydrogel is a good dye adsorber with self-photodegradability and it also can easily be separated from the reaction by simple filtration. With these properties, the TiO2/poly[AAm-co-AAc] hydrogel can be called a green polymer for use in the photodegradation-adsorption process for the abatement of various pollutants.  相似文献   

6.
《先进技术聚合物》2018,29(7):1988-2001
The present study reports synthesis and characterization of a new acrylamide‐based monomer containing rhodanine moiety, N‐3‐amino‐thiazolidine‐4‐one‐acrylamide (ATA). Poly(ATA)‐grafted magnetite nanoparticles (poly(ATA)‐g‐MNPs) were prepared using surface‐initiated atom transfer radical polymerization of the monomer on Fe3O4 nanoparticles. The grafted nanoparticles were characterized by Fourier transform infrared analysis, scanning electron microscopy, X‐ray diffraction, and vibrating sample magnetometry. The amount of the grafted polymer was 209 mg g−1, as calculated from thermogravimetric analysis experiment. The capability of poly(ATA)‐g‐MNPs to remove Co(II) cations was shown under optimal conditions of contact time, pH, adsorbent dosage, and initial Co(II) concentration. About 86% of the Co(II) cations were removed over 7 minutes. The adsorption kinetics obeyed the pseudo–second‐order kinetic equation, and the Langmuir isotherm model best described the adsorption isotherm with a maximum adsorption capacity of 3.62 mg g−1. The thermodynamic investigation showed spontaneous nature of the adsorption process (ΔG = −2.90 kJ mol−1 at 25°C ± 1°C). In addition, the poly(ATA)‐g‐MNPs were regenerated by simply washing with an aqueous 0.1M HCl solution. The study of the reusability of the prepared magnetic sorbent revealed that the sorbent can be reused without a significant decrease in the extraction efficiency and be recovered by 95.4% after 7 cycles. These findings suggest that the grafted nanoparticles are stable and reusable adsorbent and can be potentially applied to water treatment in efficient removal of Co(II) cations.  相似文献   

7.
In this research work, novel magnetic superabsorbent hydrogel nanocomposites (MSHNs) based on carboxymethyl cellulose were prepared via a facile “one‐pot” two step approach. Magnetic iron oxide nanoparticles were in situ synthesized and incorporated into carboxymethyl cellulose/poly(acrylic acid) polymer hydrogel. The morphology and chemical composition of MSHNs as well as the presence of magnetic iron oxide nanoparticles were evaluated by using Fourier transform infrared, scanning electron microscopy, transmission electron microscopy, X‐Ray diffraction, ultraviolet–visible spectroscopy, thermogravimetric analysis, and vibrating sample magnetometer. The effect of different reaction parameters on the swelling capacity of MSHNs was investigated. Furthermore, batch adsorption experiments of crystal violet dye onto MSHNs were studied by varying solution pH, initial dye concentration, and temperature. Evaluation of thermodynamic parameters of crystal violet adsorption confirmed that the adsorption was spontaneous and endothermic process in nature. The equilibrium study revealed that the dye adsorption behavior of MHSNs followed the Redlich‐Peterson isotherm model. Finally, the dye adsorption experiment data was well fitted by the pseudo‐second‐order kinetic model with the regression coefficient (R2) of 0.9979. Our results suggest that the MHSNs with facile preparation method, high swelling capacity, and high dye adsorption capacity may be used as promising adsorbents for fast removal of various dyes from aqueous solutions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
In this study, Pd nanoparticle-modified magnetic Sm2O3–ZrO2 material (Pd–Fe3O4–Sm2O3–ZrO2) as multifunctional catalyst was fabricated and used for catalytic reduction of 2-nitrophenol compound, degradation of methylene blue and rhodamine B dyes, which are toxic pollutants. The magnetic material was used for the first time as a catalyst for the reduction and degradation studies. Pd nanoparticle-modified magnetic Sm2O3–ZrO2 catalyst was prepared using the deposition–precipitation methods and were characterized by X-ray diffraction, scanning electron microscopy, atomic absorption spectrometry, Raman spectroscopy and BET surface analyzer. The Pd nanoparticle-modified magnetic Sm2O3–ZrO2 material can lead to high catalytic activity for the reduction of 2-nitrophenol and degradation of rhodamine B and methylene blue with >?95% conversion within ~?2 and 80 s even when the content of Pd in it is as low as 5.8 wt%.  相似文献   

9.
A pH-sensitive comb-type hydrogel was obtained by gamma radiation polymerization and crosslinking of acrylic acid (AAc) in solution. The pH-sensitive 4-vinylpyridine (4VP) was then grafted to the poly acrylic acid (PAAc) hydrogel using gamma radiation from a 60Co source. The comb type graft polymers obtained (net-PAAc)-g-4VP has been studied through determination of graft yield and swelling behavior. The critical pH value was found to be 5.6. The apparent mechanical properties appear to be qualitatively better than hydrogels of PAAc upon swelling. The new comb-type system presents faster swelling response (30 h) than the polyacrylic acid hydrogel (50 h). The increase in dose rate from 7.3 to 11.3 kGy h−1, increase the radiation grafting percentage of 4VP in the system. Comb-type polymers were also characterized by DSC, TGA and FTIR-ATR.  相似文献   

10.
The present work deals with phytogenic synthesis of Ag NPs in the natural polymer alginate as support material using Aglaia elaeagnoidea leaf extract as a reducing, capping, and stabilizing agent. Ag nanoparticles embedded in alginate were characterized using UV–Vis absorption spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, transmission electron microscopy techniques and selected area electron diffraction techniques. The formation of AgNPs embedded in the polymer was in spherical shape with an average size of 12 nm range has been noticed. The prepared embedded nanoparticles in polymer were evaluated as a solid heterogeneous catalyst for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) and methylene blue to leuco methylene blue in the liquid phase using sodium borohydride (NaBH4) as reducing agent. The silver nanoparticles embedded polymer exhibited extraordinary catalytic efficacy in reduction of 4-NP to 4-AP and the rate constant is 0.5054 min?1 at ambient conditions. The catalyst was recycled and reused up to 10 cycles without significant loss of catalytic activity. The preparation of Ag–CA composite was facile, stable, efficient, eco-friendly, easy to recycle, non-toxic, and cost effective for commercial application.  相似文献   

11.
Summary: Positively charged copolymer hydrogels based on N-isopropyl-acrylamide (NiPAAm) and a cationic surfactant monomer (surfmer) were functionalized upon electrostatic self-assembly of functional organic or inorganic complex counterions in the gel. As cationic surfmers 11-acryloylundecyltrimethylammonium bromide (AUTMAB) or 11-methacryloyl-undecyltrimethylammonium bromide (MUTMAB) were used. The hydrogels were prepared from a micellar aqueous solution of the surfmer and NiPAAm either upon 60Co-gamma irradiation, or upon chemical cross-linking using methylenebisacrylamide as cross-linker and 1,4-diaminobutane as accelerator. Electrostatic self-assembly was facilitated utilizing the thermoresponsive swelling and shrinking of the hydrogel. Several examples of gel functionalization are described such as in-situ preparation of Prussian Blue and Pd0 nanoparticles, and induction of fluorescent properties. The catalytic activity of the palladium-containing gel was studied by investigating the reduction of 4-nitrophenol (4-NP) with sodium borohydride as a model reaction. Fluorescent gels can be prepared upon exchange of bromide against 1-pyrenesulfonate ions in the gel.  相似文献   

12.
A novel strategy was developed for the in situ incorporation of silver nanoparticles into the supramolecular hydrogel networks, in which colloidally stable silver hydrosols were firstly prepared in the presence of an amphiphilic block copolymer of poly(oxyethylene)‐poly(oxypropylene)‐poly(oxyethylene) and then mixed with aqueous solution of α‐cyclodextrin. The analyses from rheology, X‐ray diffraction, and scanning electron microscopy confirmed the formation of the supramolecular‐structured hydrogels hybridized with silver nanoparticles. In particular, the colloidal stability of the resultant silver hydrosol and its gelation kinetics in the presence of α‐cyclodextrin as well as the viscoelastic properties of the resultant hybrid hydrogel were investigated under various concentrations of the used block copolymer. It was found that the used block copolymer could act not only as the effective reducing and stabilizing agents for the preparation of the silver hydrosol but also as the effective guest molecule for the supramolecular self‐assembly with α‐cyclodextrin. In addition, the effects of silver nanoparticles on the gelation process and the hydrogel strength were also studied. Such a hybrid hydrogel material could show a good catalytic activity for the reduction of methylene blue dye by sodium borohydride. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 740–749, 2009  相似文献   

13.
In this work, an active nano-catalyst with gold nanoparticles loaded in hollow mesoporous silica nanospheres (HMSNs/Au) was prepared by a one-pot sol-gel method, in which gold ions were loaded in hollow mesoporous silica spheres followed by sodium alginate reduction. The characterization of the HMSNs/Au were determined by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), N2 adsorption–desorption isotherms (BET). The high catalytic activity of HMSNs/Au, denoted as apparent turn-over frequency (TOF), was detected by UV-Vis spectrophotometer for the catalytic reduction of 4-nitrophenol (74.5 h?1) and 2-nitrophenol (108.7 h?1) in the presence of sodium borohydride solution due to the small gold nanoparticles size and overall exposure of active sites. It is expected that this ecofriendly approach to prepare inorganic composited nanoparticles as high active catalysts based on hollow mesoporous materials was a promising platform for loading noble metal nanoparticles.  相似文献   

14.
Ali  A. S.  Ishikawa  S.  Nomura  K.  Kuzmann  E.  Homonnay  Z.  Scrimshire  A.  Bingham  P. A.  Krehula  S.  Ristić  M.  Musić  S.  Kubuki  S. 《Journal of Radioanalytical and Nuclear Chemistry》2019,322(3):1469-1476

The relationship between local structure and visible-light activated photocatalytic effect of simulated domestic waste slag glass–ceramics (R-NaWSFe) was investigated. The largest pseudo-first-order rate constant of 9.75?×?10?3 min?1 was estimated for methylene blue decomposition test under the visible-light irradiation using R-NaWSFe with additional 30 mass% of Fe2O3 heat-treated at 900 °C for 100 min. The reason for the high photoactivity of this sample was mainly due to nanoparticles of CaFe2O4 and α-Fe2O3 confirmed by the Mössbauer spectrum measured at 77 K. It is concluded that the nanoparticles of magnetic components in silica are essential for exhibiting visible-light activated catalytic effect.

  相似文献   

15.
We developed a selective solvothermal synthesis of palladium nanoparticles on nanodiamond (ND)–graphene oxide (GO) hybrid material in solution. After the GO and ND materials have been added in PdCl2 solution, the spontaneous redox reaction between the ND–GO and PdCl2 led to the creation of nanohybrid Pd@ND@GO material. The resulting Pd@ND@GO material was characterized by X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared (FTIR) spectrometry, scanning electronic microscopy (SEM), and atomic absorption spectrometry methods. The Pd@ND@GO material has been used for the first time as a catalyst for the reduction for 2-nitrophenol and the degradation of methylene blue in the presence of NaBH4. GO plays the role of 2D support material for Pd nanoparticles, while NDs act as a nanospacer for partly preventing the re-stacking of the GO. The Pd@ND@GO material can lead to high catalytic activity for the reduction reaction of 2-nitrophenol and degradation of methylene blue with 100% conversion within ~15 s for these two reactions even when the content of Pd in it is as low as 4.6 wt%.  相似文献   

16.
采用水热法制备铜/石墨烯(Cu/RGO)复合材料,通过XRD、FTIR、SEM和TEM对材料的结构和形貌进行表征,并考察了复合材料在H_2O_2辅助作用下对次甲基蓝(MB)的催化作用。结果表明,该复合材料中石墨烯所负载的铜颗粒尺寸较小且分布均一,对MB的催化效果良好,0.18 g·L~(-1)复合催化剂在300 min内对MB的脱色效果可达90.7%,经过5次循环仍有88.0%以上。  相似文献   

17.
Superabsorbent hydrogels based on the natural polymer chitosan and acrylic acid (CS/AAc) was prepared using 60Co gamma radiation as a source of initiation and crosslinking. The factors, which affect the preparation of CS/AAc hydrogels such as irradiation dose, CS/AAc ratios, and acrylic acid monomer concentrations, to get the best optimum conditions, were investigated. The kinetic studies of the swelling of CS/AAc hydrogel showed that it follows a Fickian type of water diffusion. The Fickian constant value ‘n’ was more than 0.5 with a high swelling capacity of 300 g/g as superabsorbent hydrogel. In addition, the suitability of CS/AAc hydrogel as carrier material for the drug Chlortetracycline-HCl has been investigated by adsorption isotherm studies. The performance of drug release from hydrogel systems, influenced by acrylic acid ratio and the effect of pH of the medium was studied.  相似文献   

18.
Novel magnetic titanium dioxide nanoparticles decorated with methyltrimethoxysilane (Fe3O4@TiO2‐MTMOS) were successfully fabricated via a sol–gel method at room temperature. The synthesized material was characterized using Fourier transform infrared spectroscopy, X‐ray diffraction, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, thermogravimetric analysis and vibrating sample magnetometry. The removal efficiency of the adsorbent was evaluated through the adsorption of methylene blue (MB) dye from water samples. The adsorption isotherm and kinetics were evaluated using various models. The Langmuir model indicated a high adsorption capacity (11.5 mg g?1) of Fe3O4@TiO2‐MTMOS. The nanocomposite exhibited high removal efficiency (96%) and good regeneration (10 times) compared to Fe3O4 and Fe3O4@TiO2 at pH = 9.0. Based on the adsorption mechanism, electrostatic interaction plays a main role in adsorption since MB dye is cationic in nature at pH = 9, whereas the adsorbent acquired an anionic nature. The newly synthesized Fe3O4@TiO2‐MTMOS can be used as a promising material for efficient removal of MB dye from aqueous media.  相似文献   

19.
Diabetic mellitus is one of the leading causes of chronic wounds and remains a challenging issue to be resolved. Herein, a hydrogel with conformal tissue adhesivity, skin-like conductivity, robust mechanical characteristics, as well as active antibacterial function is developed. In this hydrogel, silver nanoparticles decorated polypyrrole nanotubes (AgPPy) and cobalt ions (Co2+) are introduced into an in situ polymerized poly(acrylic acid) (PAA) and branched poly(ethylenimine) (PEI) network (PPCA hydrogel). The PPCA hydrogel provides active antibacterial function through synergic effects from protonated PEI and AgPPy nanotubes, with a tissue-like mechanical property (≈16.8 ± 4.5 kPa) and skin-like electrical conductivity (≈0.048 S m−1). The tensile and shear adhesive strength (≈15.88 and ≈12.76 kPa, respectively) of the PPCA hydrogel is about two- to threefold better than that of fibrin glue. In vitro studies show the PPCA hydrogel is highly effective against both gram-positive and gram-negative bacteria. In vivo results demonstrate that the PPCA hydrogel promotes diabetic wounds with accelerated healing, with notable inflammatory reduction and prominent angiogenesis regeneration. These results suggest the PPCA hydrogel provide a promising approach to promote diabetic wound healing.  相似文献   

20.
In the present work, a simple and viable method for producing multi-walled carbon nanotubes (MWCNTs) decorated with CoFe2O4 nanoparticles is presented. Chemical composition and crystal structure of the CoFe2O4/MWCNT composite was confirmed by X-ray diffraction measurements, while transmission electron microscopy was used to characterize the morphology and the distribution of nanocrystals in the composite. The obtained particles with relatively small diameter (about 14.9?nm) were found to be dispersed on the carbon nanotubes. The adsorption of methylene blue dye on CoFe2O4/MWCNT composites has been investigated. CoFe2O4/MWCNT composites show high adsorption capacity for methylene blue dye. Both Langmuir and Freundlich models describe the adsorption isotherms very well and the adsorption thermodynamic parameters (?G 0, ?H 0 and ?S 0) were calculated. The adsorption of methylene blue is generally spontaneous and thermodynamically favorable. The adsorption of methylene blue involves an endothermic process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号