首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Training effects in a new class of exchange biased ferromagnet/antiferromagnet/ferromagnet trilayers (Co/NiO/[Co/Pt]3) with mutually orthogonal easy axes have been measured and successfully modeled. Previous experiments have demonstrated an enhanced blocking temperature as well as the ability to isothermally field tune the magnitude of the room temperature in-plane exchange bias. These effects have been attributed to the presence of the [Co/Pt] multilayer with perpendicular magnetic anisotropy, which variably pins the backside NiO domains. Here we show that the tuning of the exchange bias and the blocking temperature enhancement are highly dependent on both the temperature and the in-plane remanence of the normally out-of-plane [Co/Pt] multilayer, achieved using modest in-plane set fields. Training effects and their dependence on temperature and in-plane remanence are modeled using a thermodynamic approach. The in-plane remanence of the [Co/Pt] acts only to set the equilibrium exchange bias value and sets the scale for the blocking temperature; it has no effect on the training. We conclude that training effects occur only at the Co/NiO interface and that the relaxation towards equilibrium is confined to this interface. The field enhanced blocking temperature and isothermal tuning of exchange bias in these magnetic heterostructures with mutually orthogonal easy axes could play a role in the enhancement of exchange bias effects in future spin-valve devices. A thorough knowledge of the training effects is essential to account for the fundamental relaxation mechanisms that occur with repeated field cycling.  相似文献   

2.
A special consideration has been conducted on the dependencies of exchange bias and coercivity on rotatable antiferromagnetic anisotropy with respect to the collinear ferromagnetic anisotropy and field-cooling directions in ellipsoidal core/shell nanoparticles. With increasing the angle between antiferromagnetic and ferromagnetic easy axes, exchange bias field and coercivity both exhibit biaxial symmetries about the ferromagnetic easy and hard axes. Moreover, the variations of the antiferromagnetic anisotropy constant cannot change the trends of these novel behaviors, but only control their occurrences by dominating the coercive field behaviors. This new exchange-biased feature obtained by means of the special nanoparticle shape and the relative angle between anisotropies is of technological importance for maximizing exchange bias, in order to optimize the designs of the involved devices.  相似文献   

3.
The magnetic anisotropy in antiferromagnetic 500 A thick NiO films, before and after the establishment of an exchange bias field with Co84Fe16 ferromagnetic layers, was measured using magnetic linear dichroism in soft x-ray absorption. Both <111> textured NiO and untextured NiO films show exchange-bias induced in-plane magnetic anisotropy of nearly equal magnitude and with the Ni moment axis being nearly parallel to the exchange bias field direction. These results represent the first observation of the key step in the exchange biasing process, namely, repopulation of the antiferromagnetic domains whose magnetization axis is closest to the exchange bias field direction.  相似文献   

4.
The ferromagnetic resonance linewidth of Fe73.5CuNb3Si13.5B9 melt-spun ribbons has been investigated as a function of annealing temperature. Fe73.5CuNb3Si13.5B9 possesses an ultrafine grain structure which can be altered by suitable annealing to exhibit a combination of excellent soft magnetic characteristics and high saturation induction. It is a ferromagnetic metal consisting of crystallites whose anisotropy axes are randomly oriented and which may interact with each other via exchange or dipolar fields. When annealed at moderate temperatures, Fe73.5CuNb3Si13.5B9 is characterized by an extremely low coercive field, and is useful in magnetic cores and memories. At a critical temperature (∼600°C), the grain size rapidly increases with annealing temperature. This onset of crystallization is accompanied by a relatively abrupt increase in the FMR linewidth, the magnetic anisotropy field, and the coercive field. We extend the scaling arguments of Herzer to explain these obviously related phenomena.  相似文献   

5.
Co-doped NiO inhomogeneous films were synthesized by sputtering metallic Co chips and NiO together and the exchange bias of bilayers Co-doped NiO/FeNi was investigated. When Co content was up to 25.2%, the exchange bias field HE at the room temperature increased to the maximum which was about three times compared to the undoped-bilayers. With further increase of Co content, the exchange bias field HE and blocking temperature TB decreased. Analysis suggests that the configuration of nanometer-sized Co-metal clusters enchased into NiO matrix played an important role in the change of magnetic behavior for the bilayers.  相似文献   

6.
Exchange-biased bilayers are widely used in the pinned layers of spintronic devices. While magnetic field annealing (MFA) was routinely engaged during the fabrication of these devices, the annealing effect of NiO/CoFe bilayers is not yet reported. In this paper, the transition from NiO/Co90Fe10 bilayer to nanocomposite single layer was observed through rapid thermal annealing at different temperatures under magnetic field. The as-deposited and low-temperature (<623 K) annealed samples had rock salt (NiO) and face center cubic (Co90Fe10) structures. On the other hand, annealing at 623 K and 673 K resulted in nanocomposite single layers composed of oxides (matrix) and alloys (precipitate), due to grain boundary oxidization and strong interdiffusion in the NiO/CoFe and CoFe/SiO2 interfaces. The structural transition was accompanied by the reduction of grain sizes, re-ordering of crystallites, incensement of roughness, and reduction of Ni2+. When measured at room temperature, the bilayers exhibited soft magnetism with small room-temperature coercivity. The nanocomposite layers exhibited an enhanced coercivity due to the changes in the magnetization reversal mechanism by pinning from the oxides. At 10 K, the increased antiferromagnetic anisotropy in the NiO resulted in enhanced coercivity and exchange bias in the bilayers. The nanocomposites exhibited weaker exchange bias compared with the bilayers due to frustrated interfacial spins. This investigation on how the magnetic properties of exchange-biased bilayers are influenced by magnetic RTA provides insights into controlling the magnetization reversal properties of thin films.  相似文献   

7.
Using the principle of minimal energy and S-W model, the exchange bias for ferromagnetic/antiferromagnetic bilayers has been investigated when the uniaxial anisotropy is misaligned with the exchange anisotropy. According to the relation between the energy of the bilayer and the orientation of ferromagnetic magnetization, it is found that the bilayer will be in the monostable state or bistable state when the external field is absent in the initial magnetization state. The monostable state or bistable state of the bilayer, which determines the angular dependence of exchange bias directly, is controlled by the competition between the exchange anisotropy and uniaxial anisotropy. When the applied field is parallel to the intrinsic easy axes and intrinsic hard axes, one of the switching fields of the hysteresis loop shows an abrupt change, while the other keep continuous by analyzing the magnetization reversal processes. Consequently, the exchange bias field and the coercivity will show a jump phenomenon. The numerical calculations indicate that both the magnitude and direction of the exchange anisotropy will significantly affect the angular dependence of exchange bias. The jump phenomenon of exchange bias is an intrinsic property of the bilayer, which is dependent on the interfacial exchange-coupling constant, the orientation of the exchange anisotropy, the thickness and uniaxial anisotropy constant of the ferromagnetic layer.  相似文献   

8.
Nanocrystalline Cr2O3 and NiO are prepared using high-energy ball milling. Average sizes of the particles obtained from Scanning Electron Microscopy and crystallite sizes obtained from X-ray diffraction are larger for Cr2O3 than NiO particles. At low temperature, large high-field magnetization and small coercivity lead to a weak exchange bias for Cr2O3, whereas small high-field magnetization and large coercivity lead to a considerable exchange bias for NiO. The training effect is observed for NiO at 4 K which could be described with a recursive formula constructed in the framework of the spin configurational relaxation model. The results suggest that the pinning mechanism at the interface between the antiferromagnetic and the weak ferromagnetic component ascribed to uncompensated spins leads to the exchange bias effect.  相似文献   

9.
We have sputter-deposited NiO-Co bilayers on MgO(001) substrates. NiO and Co grow epitaxially on MgO and reproduce its fcc structure. The high quality of our samples, in terms of flatness and crystallographic coherence of the interface, allows the observation of an additional fourfold magnetic anisotropy term by standard magnetometry. This term is induced by interfacial interaction assigned to the same origin as exchange bias. Additional measurements of exchange bias azimuthal dependence versus the crystallographic axes of the film plane reveal unusual behaviors with several sign changes related to this fourfold anisotropy.  相似文献   

10.
A series of polycrystalline Ag-doped Ni1−xAgxO/Ni bilayers with x up to 0.2 were prepared by magnetron sputtering. X-ray diffraction, atomic force microscopy and transmission electron microscopy analyses reveal that Ag doping significantly reduces the mean NiO grain size and leads to the appearance of Ag nanoparticles on the surface of the Ag-doped NiO films. As x increases, the exchange bias field and coercivity at room temperature decrease as a consequence of the reduced thermal stability of smaller NiO grains and the screening effect resulting from the interfacial Ag nanoparticles. At lower temperatures, a slight enhancement of the exchange bias field is observed in the Ag-doped sample, indicating that the Ag doping increases the uncompensated NiO spin density. In addition, our studies find that the training effect of the Ag-doped sample can be well described by a spin configurational relaxation model, regardless of the presence of Ag nanopartiles at the interface.  相似文献   

11.
The substitution of Fe within a NiO lattice produces significant ferromagnetic properties with a coercive field of 614 Oe with a high Curie temperature. Simultaneous doping of Fe and Li reduces the magnetic transition temperature significantly. A large coercive field of 1716 Oe at 5 K is observed in Li doped systems. Random substitution of non-magnetic Li induces a spin glass phase in diluted NiO. Electrical conductivity increases with doping of Fe and Li in NiO.  相似文献   

12.
白宇浩  云国宏  那日苏 《物理学报》2009,58(7):4962-4969
采用能量极小原理及S-W模型研究了外应力对铁磁/反铁磁(FM/AFM)双层薄膜体系交换偏置的影响.不施加外磁场时,根据能量与铁磁层磁化强度方向之间的关系,指出体系存在单稳态和双稳态两种不同的状态,是由交换各向异性与单轴各向异性之间的竞争控制的.体系处于单稳态还是双稳态直接决定着交换偏置的角度依赖关系.分析磁化过程发现,外磁场沿内禀易轴及内禀难轴方向施加时,磁滞回线的一支转换场发生突变,而另一支转换场则保持不变,最终导致交换偏置场和矫顽场出现阶跃行为.数值计算表明,交换偏置场和矫顽场在阶跃点均具有较大的数值 关键词: 单稳态 双稳态 外应力  相似文献   

13.
Based on the Heisenberg model taking into account single-ion anisotropy and using a Green's function technique we have studied the influence of size and anisotropy effects on magnetization M, Neel temperature TN, coercive field Hc and spin excitation energy of antiferromagnetic nanoparticles. The properties are compared with those of ferromagnetic nanoparticles. We have shown that the enhanced magnetization M and coercive field Hc of antiferromagnetic nanoparticles is a surface effect, which is due to uncompensated surface spins. Moreover, the shape of the coercive field curve can be significantly influenced by surface magnetic anisotropy.  相似文献   

14.
Exchange bias (EB) and magnetic properties of ferrimagnetic (FI) NiFe2O4 and antiferromagnetic (AFM) NiO bulk composites, prepared by a chemical co-precipitation and post-thermal decomposition method from Fe-doped NiO matrix, have been investigated. Enhanced coercivities and shifted hysteresis loops are still observed for these samples after field cooling. But the vertical magnetization shifts are not observed. In comparison with the bulk samples, a NiO/10% NiFe2O4 nanocomposite was also prepared via direct mixture, in which both the horizontal and vertical shift in the hysteresis loops are observed at 10 K. The observed phenomena are explained in terms of interfacial exchange interaction between the two phases and the finite-size effect, respectively.  相似文献   

15.
We observed an exchange bias effect in La0.5Ca0.5FeO3 perovskite compound.The exchange bias is associated with the charge disproportionation transition from Fe4+ions to Fe3+and Fe5+ions below 175 K.The competition between the ferromagnetic interaction of Fe3+and Fe5+ions and the antiferromagnetic one of Fe3+and Fe3+ions results in a unidirectional anisotropy in the cluster-glass system.An antiferromagnetically interfacial exchange coupling constant Ji1.95 meV at the cluster-glass region was yielded by fitting the cooling field-dependence of the exchange bias field.  相似文献   

16.
The perovskite material (La0.4Pr0.6)0.67Ca0.33MnO3 (LPCMO) has complex electronic and magnetic behavior based on phase competition between ferromagnetic metallic (FMM) and insulating phases with similar free energies. Experimental evidence has indicated that in-plane stress anisotropy influences these phases and can affect electronic and magnetic properties. Here we investigate the roles that both stress and shape anisotropies may play in controlling the coercive field of the material. LPCMO thin films of various thicknesses (20, 25, and 30 nm) were deposited on (110) NdGaO3 (NGO) substrates using pulsed laser deposition and the coercive fields were measured. Photolithography was then used to fabricate microstructured arrays of LPCMO on the NGO substrates for each of the films. The coercive fields of these arrays of LPCMO were compared to the behavior of the corresponding unpatterned LPCMO thin films across a range of temperatures. Microstructure arrays for the thicker (25 and 30 nm) films showed a substantial increase in the coercive field after forming the arrays, whereas a thinner film (20 nm) showed almost no change in the coercive field. Stress anisotropy continues to play a dominant role in the behavior of LPCMO thin films and dimensionality of the magnetic domains also influences the results. The films show 2D behavior when film thickness approaches the size of the critical radius for single-to-multidomain transitions. Making thicker films allows for 3D behavior and a role for shape anisotropy to influence the coercive fields.  相似文献   

17.
Strong effects of ferromagnetic layer (FMCo, and Ni80Fe20) on the magnitude and blocking temperature of exchange coupling are observed in antiferromagnetic NiO-based films NiO (5 nm)/FM1 (t nm)/FM2 (6-t nm). The existence of interfacial spins configuration in glass-like state and FM anisotropy are proposed to interpret a minimum shown in thermal magnetization curves for films with strong exchange coupling effect. The microstructural change of FM layer and the long-range interaction of exchange bias are taken into account to explain a strong dependence of exchange coupling energy density on the thickness tF of FM layer when tF<5 nm.  相似文献   

18.
Planar defects are found to act as strong pinning centres in hard magnetic materials. The interaction of the domain wall with planar defects is assumed to originate in a local perturbation of exchange coupling and crystalline anisotropy. The coercive field is calculated within the framework of micromagnetic continuum theory as well as with a discrete lattice theory which accounts for the interaction between the individual atomic spins. The theory has been applied to discuss the influence of grain boundaries and antiphase boundaries in the intermetallic compound Co5Sm.  相似文献   

19.
We have carried out systematic studies on well-characterized monodisperse Fe3O4/γ-Fe2O3 core/shell nanoparticles of 2-30 nm having a very narrow size distribution and possessing a uniquely mono-layer of surface γ-Fe2O3. This unique core-shell structure, probably having a disordered magnetic surface state, leads us to three key observations of unusual magnetic properties: i) a very large magnetic exchange anisotropy reaching over 7 × 106 erg/cm3 for the smaller particles, ii) exchange bias behavior in the magnetization data of the core/shell Fe3O4/γ-Fe2O3 nanoparticles, and iii) the temperature dependence of the coercive field following an unusual exponential behavior.  相似文献   

20.
All-optical control of the magnetization of polycrystalline exchange bias bilayer systems is achieved using short picosecond laser pulses. Due to the photoexcitation, the spin temperature across the interface between the ferromagnetic and antiferromagnetic layer is elevated, resulting in a collapse of the interfacial exchange coupling. Thus, within the first 10 ps, a fast reduction of both the exchange bias field and the coercive field is observed for three different exchange bias systems comprising both different ferromagnets and antiferromagnets. The fast thermal unpinning is followed by a slower heat diffusion dominated relaxation process, which strongly depends on the thermal conductivity of the used buffer layers and substrates. The fast optical unpinning can be understood in terms of an internal anisotropy pulse field capable of triggering ultrafast precessional magnetization dynamics of the ferromagnetic layer, which makes heat-assisted coherent magnetization rotation feasible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号