首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
This paper focuses on the development of methodology based on MALDI-TOF mass spectrometry for evaluation of molecular weight profile of the water-insoluble portion of an extracellular polysaccharide, i.e. Curdlan. As previously demonstrated, MALDI analysis of water-insoluble Curdlan fraction gave number-average and weight-average molecular weights of 8000 and 8700 Da, respectively [T.W.D. Chan, K.Y. Tang, Rapid Commun. Mass Spectrom. 17 (2003) 887]. To validate the MALDI determined molecular weight information, several additional analytical schemes were used to analysis the water-insoluble Curdlan fraction. In all cases, the water-insoluble Curdlan sample was fractionated by gel permeation chromatography (GPC) using Sephadex G-75 column. The of low-mass and narrow distributed polysaccharide fractions were obtained by MALDI-MS. Good linearity was found in the calibration plot constructed from the measured -values and the corresponding elution time/volume. The relative quantity of various fractionated samples was then measured using three different approaches. These include (a) direct refractometric analysis; (b) UV-vis absorption analysis of the Aniline Blue stained sample; and (c) GC-MS analysis of the hydrolyzed and TMS-derivatized sample. Using results obtained from theses quantification methods and the correlation function between the GPC retention time and , the MW and MWD of water-insoluble Curdlan were obtained. Our results demonstrated that the previous use of MALDI methods for measuring and polydispersity (PD) of water-insoluble Curdlan (with and without GPC fractionation) were unreliable. However, by standardizing the narrow distributed polysaccharides using MALDI-MS method, reliable molecular weight information for dispersed polysaccharides could be obtained. The and PD of the water-insoluble Curdlan were found to be 22,000, 31,500 Da and 1.40, respectively.  相似文献   

2.
Preparation of samples according to an optimized method is crucial for accurate determination of polymer sample characteristics by Matrix-Assisted Laser Desorption Ionization (MALDI) analysis. Sample preparation conditions such as matrix choice, cationization agent, deposition technique or even the deposition volume should be chosen to suit the sample of interest. Many sample preparation protocols have been developed and employed, yet finding the optimal sample preparation protocol remains a challenge. Because an objective comparison between the results of diverse protocols is not possible, “gut-feeling” or “good enough” is often decisive in the search for an optimum. This implies that sub-optimal protocols are used, leading to a loss of mass spectral information quality. To address this problem a novel analytical strategy based on MALDI imaging and statistical data processing was developed in which eight parameters were formulated to objectively quantify the quality of sample deposition and optimal MALDI matrix composition and finally sum up to an overall quality score of the sample deposition. These parameters can be established in a fully automated way using commercially available mass spectrometry imaging instruments without any hardware adjustments. With the newly developed analytical strategy the highest quality MALDI spots were selected, resulting in more reproducible and more valuable spectra for PEG in a variety of matrices. Moreover, our method enables an objective comparison of sample preparation protocols for any analyte and opens up new fields of investigation by presenting MALDI performance data in a clear and concise way.  相似文献   

3.
The influence of the sample preparation parameters (the choice of the solvent and of the matrix:analyte ratio) was investigated and optimal conditions were established for MALDI mass spectrometry analysis of the pristine low molecular weight polyvinyl acetate (PVAc). It was demonstrated that comparison of polymer’s and solvent’s Hansen solubility parameters could be used as a guide when choosing the solvent for MALDI sample preparation. The highest intensity PVAc signals were obtained when ethyl acetate was used as a solvent along with the lowest matrix–analyte ratio (2,5-dihydroxybenzoic acid was used as a matrix in all experiments). The structure of the PVAc was established with high accuracy using the matrix-assisted laser desorption/ionization-Fourier transform mass spectrometry (MALDI-FTMS) analysis. It was demonstrated that PVAc undergoes unimolecular decomposition by losing acetic acid molecules from its backbone under the conditions of FTMS measurements. Number and weight average molecular weights as well as polydispersity indices were determined with both MALDI-TOF and MALDI-FTMS methods. The sample preparation protocol developed was applied to the analysis of a chewing gum and the molecular weight and structure of the polyvinyl acetate present in the sample were established. Thus, it was shown that optimized MALDI mass spectrometry could be used successfully for characterization of polyvinyl acetate in commercially available chewing gum.  相似文献   

4.
A recently developed solvent-free compressed-sample technique for matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) analysis allows the reproducible analysis of synthetic polymers and peptides up to 3,500 Da. In this work, we present an improvement in resolution, an increase in intensity and a decrease of the variation coefficient, as illustrated by the analysis of PEG 2000 and MALDI imaging experiments. These advantages were achieved by homogenization of the electrical field, which was disturbed by the drills in the original MALDI target. In order to homogenize the electrical field, a new target with smaller drills was developed, metal powder was added to the matrix/analyte mixture and a round laser raster was used. Furthermore, a ball mill was implemented for the sample preparation to replace the extremely user-dependent grinding in a mortar. The new conditions were successfully applied to the quantification of several peptides of higher molecular weight and gave higher precision than had previously been achieved with the compressed-sample technique.  相似文献   

5.
In the present study, we address the possibility of matrix-assisted laser desorption/ionization (MALDI)–time-of-flight MS analysis-induced chain fragmentation in poly(p-phenylene terephthalamide) (PPD-T) by considering two possible sources: (1) grinding-induced fragmentation resulting from the evaporation–grinding MALDI sample preparation method (E-G method) and (2) in-source/metastable fragmentation induced by the MALDI laser. An analysis of variance (ANOVA) statistical study found, with a high probability, that obtaining MALDI spectra with the effective laser area as large as possible (the “fanned-out” setting) did not cause any chain fragmentation due to the E-G MALDI sample preparation method, even when three additional grinding steps were used. However, the effect of laser fluence was less clear. A significant effect of laser fluence was observed for lower mass oligomers (<1,400 Da), but there was essentially no effect for higher mass species up to our limit of ANOVA measurement (∼2,300 Da). Plausible explanations are presented to explain these observations. The most likely scenario is that “unexpected” end-group modifications occur during PPD-T synthesis, producing small quantities of low mass species, which are amplified by the MALDI-EG extraction procedure.  相似文献   

6.
Small molecule analysis by MALDI mass spectrometry   总被引:3,自引:0,他引:3  
This review focuses on the application of matrix assisted laser desorption/ionization (MALDI) mass spectrometry to the characterization of molecules in the low mass range (<1500 Da). Despite its reputation to the contrary, MALDI is a powerful technique to provide both qualitative and quantitative determination of low molecular weight compounds. Several approaches to minimize interference via sample preparation and matrix selection are discussed, as well as coupling of MALDI to liquid and planar chromatographic techniques to extend its range of applicability.  相似文献   

7.
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry is used for the first time to characterize radio frequency plasma-deposited polymers and for investigation of the plasma polymerization process. The MALDI mass spectra of the plasma polymers of allyl alcohol, di(ethylene glycol) vinyl ether and ethylene glycol butyl vinyl ether are all reported using solvent-based MALDI sample preparation approaches. The MALDI mass spectra of each of the three plasma polymers contain distinctive polymer series ion signals having molecular weight distributions below 2000 Da. Unexpectedly, however, the ion signals from each of the three plasma polymers show a common polymer repeat unit of 44 Da, for which the chemical formula is most likely -(C(2)H(4)O)-, and no evidence of the expected radical chain polymerization polymer is detected. These results are discussed in terms of the likely involvement of gas-phase radical species having different stabilities in the radio frequency plasma environment.  相似文献   

8.
The water-soluble protein profile of the seeds of green, red, and yellow Theobroma cacao L. fruits has been determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF-MS). The seeds were powdered under liquid nitrogen and defatted. The residues were dialyzed and lyophilized. The obtained samples were suspended in the matrix solution of sinapinic acid. The obtained MALDI mass spectra showed the presence of a wide number of proteins with molecular weight ranging from 8000 to 13,000 Da and a cluster of peaks centered at 21,000 Da that were attributed to albumin. The abundance of this peak was found to depend on the different portion of the seed (husk, apical and cortical parts); however, the MALDI mass spectra obtained from the different varieties of cocoa were practically superimposable. Changes in the protein profiles were also observed after the cocoa seeds were treated by fermentation and roasting, which are processes usually employed for the commercial production of cocoa.  相似文献   

9.
Three sample preparation strategies commonly employed in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOFMS) of whole bacterial cells were investigated for the detection of high mass signals; these included the dried droplet, the seed-layer/two-layer, and the bottom-layer methods. Different sample preparation approaches favoured the detection of high- or low-mass proteins. The low-mass peaks were best detected using the bottom-layer method. By contrast, the dried droplet method using a solvent with higher water content, and hence effecting a slower crystallization process, gave the best results for the detection of high-mass signals. Signals up to m/z 158 000 could be detected with this methodology for Bacillus sphaericus. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) analysis of the same extracts used for MALDI-TOFMS showed bands in the molecular weight range in which high-mass peaks were observed in MALDI-MS, suggesting that the high-mass signals are not polymeric adducts of low-mass protein monomers. In addition, one of the high molecular weight proteins (approximately 126 kDa) was putatively identified as an S-layer protein by an in-gel tryptic digest. The bacterial samples spotted on the target wells for MALDI-TOFMS, using the different sample preparation strategies, were examined under a scanning electron microscope and differences were observed between the different strategies, suggesting that the nature of the crystals and the distribution of the analytes amidst the crystals could influence the spectral pattern observed in MALDI-TOFMS of whole bacterial cells. Finally, evidence is presented to indicate that, although the determinants are intact cells, cell lysis occurs both before and during the MALDI process.  相似文献   

10.
The use of UV-absorbing molecules as matrices in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) is well documented. The matrices that are currently used have low molecular weights (<300 Da) and thus, for a typical MALDI-TOF spectrum, the low-mass range (m/z 100-500) is dominated by matrix ions. Consequently, the applications of MALDI-TOFMS have been restricted mostly to the analysis of high molecular weight analytes. This report demonstrates the use of meso-tetrakis(pentafluorophenyl)porphyrin (F20TPP, MW 974.57) as a matrix in the MALDI-TOF mass spectrometric analysis of some commercial nonylphenol ethoxylates (4-(C(9)H(19))-C(6)H(4)-(OCH(2)CH(2))(n)-OH), in which the ethoxymer ion distribution ranges from 331-771 Da. When F20TPP was used without a sodium ion dopant, there were no MALDI signals for the ethoxylates. However, addition of sodium acetate to the sample produced MALDI spectra in which the ethoxymer molecules were sodiated to form [M + Na](+) ions. A comparison of the mass spectrometric data with those obtained when alpha-cyano-4-hydroxycinnamic acid (CHCA) was used as the matrix indicated that the F20TPP-induced spectra provided comparable data, with the advantage of having less matrix interference in the low-mass range (m/z 100-500). Thus, the use of F20TPP and similar porphyrins may provide the means to apply MALDI-TOF to the analysis of low molecular weight molecules with minimum interference from matrix signals. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   

11.
Although electrospray sample deposition in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) sample preparation increases the repeatability of both the MALDI signal intensity and the measured molecular mass distribution (MMD), the electrospray sample deposition method may influence the apparent MMD of a synthetic polymer. The MMDs of three polymers of differing thermal stability, polystyrene (PS), poly(ethylene glycol) (PEG), and poly(propylene glycol) (PPG), were studied by MALDI time-of-flight (TOF) MS as the electrospray deposition voltage was varied. The MMDs obtained using the electrospray deposition method were compared with those obtained for hand-spotted samples. No change was observed in the measured polymer MMD when the electrospray deposition voltage was varied in the analysis of PS, but those of PEG and PPG changed at higher electrospray voltages due to increased ion fragmentation. It was also shown that the fragmentation in the hand-spotted samples is dependent on the matrix used in sample preparation.  相似文献   

12.
A variety of derivatized fullerenes have been studied by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. Of particular emphasis has been the evaluation of a recently introduced solvent-free sample/target preparation method. Solvent-free MALDI is particularly valuable in overcoming adverse solvent-related effects, such as insolubility and/or degradation of the sample. The method was applied to fullerene derivatives susceptible to decomposition under insufficiently "soft" MALDI conditions. Analytes included the hydrofullerene: C(60)H(36), fluorofullerenes: C(60)F(x) where x = 18, 36, 46, 48 and C(70)F(x) where x = 54, 56, methano-bridged amphiphilic ligand adducts to C(60) and the [4 + 2] cycloadduct of tetracene to C(60). The new solvent-free sample preparation is established as an exceedingly valuable addition to the repertoire of preparation protocols within MALDI. The MALDI mass spectra were of very high quality throughout, providing a testimony that "soft" MALDI conditions could be achieved. Using the [4 + 2] cycloadduct of tetracene to C(60) as the model analyte for direct comparison with solvent-based MALDI, the solvent-free approach led to less fragmentation and more abundant analyte ions. Applying solvent-free sample preparation, different matrix compounds have been examined for use in the MALDI of derivatized fullerenes, including sulfur, tetracyanoquinodimethane (TCNQ), 9-nitroanthracene (9-NA) and trans-2-[3-(4-tert-butylphenyl)-2-methyl-2- propenylidene]malononitrile (DCTB). DCTB was confirmed as the best performing matrix, reducing unwanted decomposition and suppression effects.  相似文献   

13.
A new solvent-free sample preparation method using silver trifluoroacetate (AgTFA) was developed for the analysis of low molecular weight paraffins and microcrystalline waxes by laser desorption/ionization time-of-flight mass spectrometry (LDI-TOFMS). Experiments show that spectral quality can be enhanced by dispersing AgTFA directly in liquid paraffins without the use of additional solvents. This preparation mixture is applied directly to the MALDI probe. Solid waxes could be examined by melting prior to analysis. The method also provides sufficiently reproducible spectra that peak area ratios between mono- and bicyclic alkane peaks indicated variations in the cycloalkane content of paraffin samples. Dehydrogenation of hydrocarbons observed during the desorption/ionization process was studied by analysis of alkane standards.  相似文献   

14.
An efficient, low sample load mini-ball mill (MBM) sample preparation procedure was developed for solvent-free MALDI analysis of peptides and proteins. Picomole sample amounts can be handled conveniently, with 30 s grinding times being sufficient. Matrix purity and molar analyte/matrix ratios are not as critical as with methods employing solvent. Ammonium salt is employed for protonation of the peptide and suppression of sodiation. This strategy allows for peptide mapping and other biochemical manipulations to be performed prior to MBM sample preparation and mass analysis. The analysis of bovine serum albumin (66 kDa) yielded good results, indicating that higher molecular weight proteins are accessible. A semi-solvent-free strategy by the MBM sample preparation method is also described.  相似文献   

15.
表面活性剂的基体辅助激光解吸电离/质谱分析表征   总被引:1,自引:0,他引:1  
利用基体辅助激光解吸电离/质谱(MALDI-MS)技术对表面活性剂的分析表征进行了详细研究。以2,5-二羟基苯甲酸作为基体,考察MALDI样品制备方法如液滴干燥法、快速干燥法及三明治法对测定结果的影响,发现三明治方法更适合表面活性剂的分析。MALDI可以准确测定离子型表面活性剂的分子量,同时对于非离子型表面活性剂,还可以测定其平均聚合度和分子量的分布。  相似文献   

16.
In this study we compare on-line gel permeation chromatography (GPC) electrospray ionization (ESI) time-of-flight (TOF) mass spectrometry (MS) to automated GPC matrix assisted laser desorption ionization (MALDI) TOF MS for poly (dimethylsiloxane) (PDMS) analysis. Average mass values for a hydroxyl-terminated PDMS (OH-PDMS) sample were obtained and compared to traditional GPC that was calibrated with narrow polystyrene standards, by direct ESI and MALDI MS analysis, by a summation of mass spectra of all GPC fractions, and also by the recalibration method determined by both mass spectrometric methods. Quantitatively, the difference noted here between these hyphenated techniques is that GPC-ESI-TOF MS effectively reports the low-mass oligomers and underestimates the high-mass oligomers, while GPC-MALDI-TOF MS effectively reports the high-mass oligomers and underestimates the low-mass oligomers. In the GPC-ESI-TOF MS experiments, ion current suppression was observed in the high molecular weight region. The suppression effect was confirmed by repeatable sample runs and by injecting different PDMS samples. Higher chromatographic resolution was observed for GPC-ESI-TOF MS compared to GPC-MALDI-TOF MS. In fact, truly mono-disperse oligomers were observed in the low molecular weight range from GPC-ESI MS experiments.  相似文献   

17.
用小分子meso -四 (α,α ,α ,α -O -苯乙酰苯 )卟啉免疫Balb/c小鼠 ,用单克隆抗体技术得到细胞株 1F2和单抗 1F2 ,这是对传统免疫理论的一个突破 .利用高效液相色谱和基质辅助激光解吸质谱 (matrixassistedlaserdesorptionionizationtime_of_flightmassspectography ;缩写为MALDI/TOFMS)证明了纯化得到单抗体 1F2的纯度很好 ,同时得到的单抗 1F2的相对分子量为 15 6 6 78.8Da .MALDI/TOFMS提供了一种测定蛋白质相对分子量和纯度快速准确的方法  相似文献   

18.
A new instrument and method is described for laterally resolved mass spectrometric surface analysis. Fields of application are in both the life sciences and the material sciences. The instrument provides for imaging of the distribution of selected sample components from natural and artificial surfaces. Samples are either analyzed by laser desorption ionization (LDI) time-of-flight mass spectrometry or, after preparation with a suitable matrix, by matrix-assisted laser desorption ionization (MALDI) mass spectrometry. Areas of 100 x 100 microm are scanned with minimal increments of 0.25 microm, and between 10,000 and 160,000 mass spectra are acquired per image within 3 to 50 min (scan rate up to 50 pixels per s). The effective lateral resolution is in the range of 0.6 to 1.5 microm depending on sample properties, preparation methods and laser wavelength. Optical investigation of the same sample area by UV confocal scanning laser microscopy was found to be very attractive in combination with scanning MALDI mass analysis because pixel-identical images can be created with both techniques providing for a strong increase in analytical information. This article describes the method and instrumentation, including first applicational examples in elemental analysis, imaging of pine tree roots, and investigation of MALDI sample morphology in biomolecular analysis.  相似文献   

19.
Effect of sample preparation methods on the matrix-assisted laser desorption/ionization (MALDI) analysis of dispersed polysaccharides is reported. By using the conventional drop-drying method, the measured number-averaged molecular weights were found to differ significantly from the values obtained from gel-permeation chromatography (GPC). These discrepancies were found to increase as the average masses of the polysaccharides increased. To understand the impact of the sample preparation method on the MALDI measurement, a dispersed dextran sample was separated into ten narrow-distribution fractions. Mixtures of different mass fractions were prepared and analyzed by using different mixing and preparation methods. By using the ratio of the signal intensity for the low-mass fraction to that of the high-mass fraction as an indicator, the impact of sample preparation conditions on the enhancement of low-mass components (or suppression of high-mass components) was determined. From the results obtained, it is postulated that the difference in solubilities between the low-mass and high-mass components for dispersed polymers might be large enough to induce an enhancement of low-mass components (or suppression of high-mass components) at the surface of the crystals during sample crystallization in the drop-drying method.  相似文献   

20.
L. Fernandes  M. Temtem 《Talanta》2008,77(2):882-888
Different ultrasonic devices including ultrasonic bath with dual frequency, sonoreactor and ultrasonic probe, were tested for their viability in the sample treatment for polymer characterization by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis. The effect of sonication frequency (35 kHz, 40 kHz and 130 kHz), sonication amplitude, and sonication time on the polymer's number-average molecular weight (Mn) and weight-average molecular weight (Mw) were investigated. The effect of those variables in the molecular mass distribution of three polymer standards, poly(styrene) 2000 Da and 10,000 Da and poly(ethylene glycol) 1000 Da, was evaluated. In addition, the influence of ultrasonic energy on the sample treatment as a function of the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI) matrix was also studied through two common standard matrices, dithranol and 2,5-dihydroxybenzoic acid. The results obtained show that the ultrasonic bath at 35 kHz is the best option for the purpose of fast sample treatment for polymer characterization. The Mn and Mw values obtained for this ultrasonic device and for the three polymers tested using dithranol as MALDI matrix, were not statistically different from the ones acquired with vortex mixing and also were in concordance with the values recommended by the polymer manufacturers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号