首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
The CH radical is frequently used as a flame marker because it is relatively short-lived and is present over a narrow region in flames. Discontinuities in the CH field are thus often interpreted as localized extinction of the flame. Recently, however, the adequacy of CH laser-induced fluorescence (LIF) as a flame marker was questioned by an experimental study of flame–vortex interactions in highly N2-diluted premixed methane flames. We demonstrate both experimentally and numerically that anomalies in the transient response of CH in this earlier study were due to reactant composition variations in the vortex. In addition, we evaluate the adequacy of CH LIF as a flame marker over a much broader range of conditions. Previous numerical studies showed that heat release rate correlates reasonably well with peak [HCO] and the concentration product [OH][CH2O], but poorly with [CH], in highly N2-diluted premixed methane flames. Here, the correlation between heat release rate and CH is investigated both experimentally, by performing simultaneous measurements of CH, OH, and CH2O LIF, and numerically. We consider undiluted and N2-diluted premixed methane flames over a range of strain rates and stoichiometries. Results are reported for flames subjected to unsteady stretch and reactant composition variations. For all N2-dilution levels considered, the peak CH LIF signal correlates poorly with heat release rate when the stoichiometry of the reactant mixture changes from rich to lean. However, when flames are subjected to stretch, the correlation between CH and heat release rate improves as the N2-dilution level decreases. The correlation is reasonably good for undiluted flames with equivalence ratios of 0.8 < Φ < 1.2. This result is particularly encouraging, given the relevance of undiluted flames to practical applications, and it motivates further investigation of the parameter space for which difficulties may exist in using CH as a flame marker.  相似文献   

2.
In this paper, we present a study on the effect of Lewis number, Le, on the stabilization and blow-off of laminar lean limit premixed flames stabilized on a cylindrical bluff body. Numerical simulations and experiments are conducted for propane, methane and two blends of hydrogen with methane as fuel gases, containing 20% and 40% of hydrogen by volume, respectively. It is found that the Le?>?1 flame blows-off via convection from the base of the flame (without formation of a neck) when the conditions for flame anchoring are not fulfilled. Le?≤?1 flames exhibit a necking phenomenon just before lean blow-off. This necking of the flame front is a result of the local reduction in mass burning rates causing flame merging and quenching of the thin flame tube formed. The structure of these flames at the necking location is found to be similar to tubular flames. It is found that extinction stretch rates for tubular flames closely match values at the neck location of bluff-body flames of corresponding mixtures, suggesting that excessive flame stretch is directly responsible for blow-off of the studied Le?≤?1 flames. After quenching of the neck, the upstream part forms a steady and stable residual flame in the wake of the bluff body while the downstream part is convected away.  相似文献   

3.
We, herein, report an experimental study to investigate the role of local flamefront dynamics on the propagation and acceleration of cellularly unstable premixed expanding laminar flames. Using simultaneous Mie-scattering imaging and Particle Image Velocimetry, we measured the flame edge location and its adjacent flow field, which were subsequently processed to quantify the evolution of the probability density functions (pdfs) of flow velocities, curvature, normal strain rate and tangential strain rate. We showed that appropriate normalizaton of the measured quantities can unify the data from different pressures when identified with the corresponding Peclet number, defined as the ratio of the flame radius to the flame thickness. Since the flamefront is stable and smooth at lower Peclet numbers, the flame-induced flow field and stretch rates are almost uniform over the flamefront, resulting in narrow pdfs. At higher Peclet numbers, however, the flame becomes progressively more wrinkled and hence the variations in the local quantities increase leading to wider pdfs. Furthermore, while the mean curvature was found to be inversely proportional to the mean flame radius and insensitive to the cellular structure, the mean normal strain rate was strongly influenced by the cellular structure.  相似文献   

4.
The influence of Soret diffusion on lean premixed flames propagating in hydrogen/air mixtures is numerically investigated with a detailed chemical and transport models at normal and elevated pressure and temperature. The Soret diffusion influence on the one-dimensional (1D) flame mass burning rate and two-dimensional (2D) flame propagating characteristics is analysed, revealing a strong dependency on flame stretch rate, pressure and temperature. For 1D flames, at normal pressure and temperature, with an increase of Karlovitz number from 0 to 0.4, the mass burning rate is first reduced and then enhanced by Soret diffusion of H2 while it is reduced by Soret diffusion of H. The influence of Soret diffusion of H2 is enhanced by pressure and reduced by temperature. On the contrary, the influence of Soret diffusion of H is reduced by pressure and enhanced by temperature. For 2D flames, at normal pressure and temperature, during the early phase of flame evolution, flames with Soret diffusion display more curved flame cells. Pressure enhances this effect, while temperature reduces it. The influence of Soret diffusion of H2 on the global consumption speed is enhanced at elevated pressure. The influence of Soret diffusion of H on the global consumption speed is enhanced at elevated temperature. The flame evolution is more affected by Soret diffusion in the early phase of propagation than in the long run due to the local enrichment of H2 caused by flame curvature effects. The present study provides new insights into the Soret diffusion effect on the characteristics of lean hydrogen/air flames at conditions that are relevant to practical applications, e.g. gas engines and turbines.  相似文献   

5.
Recent numerical and experimental studies have unveiled a potentially marked difference between the laminar as well as turbulent propagation of premixed flames exhibiting Darrieus–Landau (DL) (or hydrodynamic) instabilities from flames for which instabilities are inhibited. In this study we utilize two-dimensional numerical simulations of slot burner flames as well as experimental Propane–Air Bunsen flames to analyse differences in turbulent propagation, strain rate and induced flow patterns of hydrodynamically stable and unstable flames. We also investigate the effects of hydrodynamic instability on quantities which are directly related to reaction rate closure models, such as flame surface density and stretch factor. A clear enhancement of turbulent flame speed can be observed for unstable flames, generally mitigated at higher turbulence intensity, which is attributed to a flame area increase induced by the characteristic cusp-like DL-induced corrugation, absent in stable flames, which occurs concurrently and in synergy with turbulent wrinkling. Unstable flames also exhibit, both numerically and experimentally, a different correlation between strain rate and flame curvature and are observed to give rise to a channeling of the induced flow in the fresh mixture. Conditionally averaged flame surface density is also observed to attain smaller values in unstable flames, as a result of the thicker turbulent flame brush, indicating that closure models should incorporate instability-related parameters in addition to turbulence-related parameters.  相似文献   

6.
We present experimental results from turbulent low-swirl lean H2/CH4 flames impinging on an inclined, cooled iso-thermal wall, based on simultaneous stereo-PIV and OH×CH2O PLIF measurements. By increasing the H2 fraction in the fuel while keeping Karlovitz number (Ka) fixed in a first series of flames, a fuel dependent near-wall flame structure is identified. Although Ka is constant, flames with high H2 fraction exhibit significantly more broken reaction zones. In addition, these high H2 fraction flames interact significantly more with the wall, stabilizing through the inner shear layer and well inside the near-wall swirling flow due to a higher resistance to mean strain rate. This flame-wall interaction is argued to increase the effective local Ka due to heat loss to the wall, as similar flames with a (near adiabatic) ceramic wall instead of a cooled wall exhibit significantly less flame brokenness. A second series of leaner flames were investigated near blow-off limit and showed complete quenching in the inner shear layer, where the mean strain rate matches the extinction strain rate extracted from 1D flames. For pure CH4 flames (Ka ≈ 30), the reaction zone remains thin up to the quenching point, while conversely for the 70% H2 flames (Ka ≈ 1100), the reaction zone is highly fragmented. Remarkably, in all near blow-off cases with CH4 in the fuel, a large cloud of CH2O persists downstream the quenching point, suggesting incomplete combustion. Finally, ultra lean pure hydrogen flames were also studied for equivalence ratios as low as 0.22, and through OH imaging, exhibit a clear transition from a cellular flame structure to a highly fragmented flame structure near blow-off.  相似文献   

7.
To investigate (fuel-)lean/rich limits and essential stoichiometries, i.e., the borders of lean/rich combustion, one-dimensional steady computations with detailed chemistry for flame balls, counterflow flames, and stretch-free planar flames were conducted using a CH4/O2/Xe mixture that has been used in microgravity experiments. As continuous converged solutions were obtained under lean/rich conditions, it was suggested that the existence of flame ball not only under lean but also under rich condition. Flame radii and temperatures of flame balls decreased and increased toward the lean/rich limits from their maximum and minimum values, respectively. The lean limits were wider in the order of the flame ball, counterflow flame, and stretch-free planar flame. Therefore, the lean flammability limit corresponded to the lean limit of the flame ball in the mixture. Conversely, the rich limits were wider in the order of the counterflow flame, stretch-free planar flame, and flame ball. Thus, the rich flammability limit corresponded to the rich limit of the counterflow flame in the mixture. Essential stoichiometry, which represents the actual stoichiometry depending on the dominant transport in near-flame front, was not uniquely determined as conventional stoichiometry (ϕ = 1); it was located between the equivalence ratio of ϕ = 1 and ϕc, where ϕ c denotes the critical equivalence ratio is evaluated using the fuel and oxidizer Lewis number of a target mixture. The results indicated that the essential stoichiometry of the stretch-free planar flame corresponded to ϕ = 1, that of the flame ball corresponded to ϕ = ϕ c, and that of the stretched flame was located between ϕ = 1 and ϕ c depending on the stretch rate.  相似文献   

8.
An experimental study on CH4–CO2–air flames at various pressures is conducted by using both laminar and turbulent Bunsen flame configurations. The aim of this research is to contribute to the characterization of fuel lean methane/carbon dioxide/air premixed laminar and turbulent flames at different pressures, by studying laminar and turbulent flame propagation velocities, the flame surface density and the instantaneous flame front wrinkling parameters. PREMIX computations and experimental results indicate a decrease of the laminar flame propagation velocities with increasing CO2 dilution rate. Instantaneous flame images are obtained by Mie scattering tomography. The image analysis shows that although the height of the turbulent flame increases with the CO2 addition rate, the flame structure is quite similar. This implies that the flame wrinkling parameters and flame surface density are indifferent to the CO2 addition. However, the pressure increase has a drastic effect on both parameters. This is also confirmed by a fractal analysis of instantaneous images. It is also observed that the combustion intensity ST/SL increases both with pressure and the CO2 rate. Finally, the mean fuel consumption rate decreases with the CO2 addition rate but increases with the pressure.  相似文献   

9.
The initiation, propagation, and transition of the autoignition assisted spherical cool flame and double flame are studied numerically and experimentally using n-heptane/air/He mixtures under shock-tube experimental conditions over a wide range of temperatures. The primary goal of the current study is to understand the effects of the ignition Damkohler number, ignition energy, flame curvature, and autoignition-induced flow compression on the propagation of spherical flames to ensure the proper interpretation of shock-tube flame speed measurements at engine-relevant conditions. The results show that at high ignition Damkohler number, there are three different flame regimes, cool flame, double flame, and hot flame. The cool flame speed accelerates dramatically with the increase of ignition Damkohler number. In addition, it is found that the change of flame regime, low-temperature autoignition, flame stretch, and autoignition-induced flow compression result in a complicated non-linear dependence of flame speed on stretch. The results also reveal that the spherical cool flame has much lower Markstein length compared to the hot flame at T > 600 K. Moreover, it is found that both the autoignition assisted cool flame and the trailing hot flame front in the double flame can propagate much faster that the hot flame alone at the same mixture conditions, leading to a nonlinear dependence of flame speed on the mixture initial temperature. The simulated flame trajectories and the flame speed dependence on temperature agree qualitatively well with the shock-tube experiments. A quantitative criterion to ensure the accurate speed measurement of the cool and hot flame is proposed. The present study provides important physical insight and guidance for the flame speed measurement using a shock-tube at engine relevant conditions.  相似文献   

10.
This work reports an experimental and kinetic modeling investigation on the laminar flame propagation of acetone and 2-butanone at normal to high pressures. The experiments were performed in a high-pressure constant-volume cylindrical combustion vessel at 1–10 atm, 423 K and equivalence ratios of 0.7–1.5. A kinetic model of acetone and 2-butanone combustion was developed from our recent pentanone model [Li et al., Proc. Combust. Inst. 38 (2021) 2135–2142] and validated against experimental data in this work and in literature. Together with our recently reported data of 3-pentanone, remarkable fuel molecular structure effects were observed in the laminar flame propagation of the three C3C5 ketones. The laminar burning velocity increases in the order of acetone, 2-butanone and 3-pentanone, while the pressure effects in laminar burning velocity reduces in the same order. Modeling analysis was performed to provide insight into the key pathways in flames of acetone and 2-butanone. The differences in radical pools are concluded to be responsible for the observed fuel molecular structure effects on laminar burning velocity. The favored formation of methyl in acetone flames inhibits its reactivity and leads to the slowest laminar flame propagation, while the easiest formation of ethyl in 3-pentanone flames results in the highest reactivity and fastest laminar flame propagation. Furthermore, the LBVs of acetone and 3-pentanone exhibit the strongest and weakest pressure effects respectively, which can be attributed to the influence of fuel molecular structures through two crucial pressure-dependent reactions CH3 + H (+M) = CH4 (+M) and C2H4 + H (+M) = C2H5 (+M).  相似文献   

11.
12.
Premixed turbulent flames of methane–air and propane–air stabilized on a bunsen type burner were studied using planar Rayleigh scattering and particle image velocimetry. The fuel–air equivalence ratio range was from lean 0.6 to stoichiometric for methane flames, and from 0.7 to stoichiometric for propane flames. The non-dimensional turbulence rms velocity, u′/SL, covered a range from 3 to 24, corresponding to conditions of corrugated flamelets and thin reaction zones regimes. Flame front thickness increased slightly with increasing non-dimensional turbulence rms velocity in both methane and propane flames, although the flame thickening was more prominent in propane flames. The probability density function of curvature showed a Gaussian-like distribution at all turbulence intensities in both methane and propane flames, at all sections of the flame.The value of the term , the product of molecular diffusivity evaluated at reaction zone conditions and the flame front curvature, has been shown to be smaller than the magnitude of the laminar burning velocity. This finding questions the validity of extending the level set formulation, developed for corrugated flames region, into the thin reaction zone regime by increasing the local flame propagation by adding the term to laminar burning velocity.  相似文献   

13.
Different approaches to the modelling of turbulent combustion first are reviewed briefly. A unified, stretched flamelet approach then is presented. With Reynolds stress modelling and a generalized probability density function (PDF) of strain rate, it enables a source term, in the form of a probability of burning function, Pb, to be expressed as a function of Markstein numbers and the Karlovitz stretch factor. When Pb is combined with some turbulent flame fractal considerations, an expression is obtained for the turbulent burning velocity. When it is combined with the profile of the unstretched laminar flame volumetric heat release rate plotted against the reaction progress variable and the PDF of the latter, an expression is obtained for the mean volumetric turbulent heat release rate. Through these relationships experimental values of turbulent burning velocity might be used to evaluate Pb and hence the CFD source term, the mean volumetric heat release rate.

Different theoretical expressions for the turbulent burning velocity, including the present one, are compared with experimental measurements. The differences between these are discussed and this is followed by a review of CFD applications of these flamelet concepts to premixed and non-premixed combustion. The various assumptions made in the course of the analyses are scrutinized in the light of recent direct numerical simulations of turbulent flames and the applications to the flames of laser diagnostics. Remaining problem areas include a sufficiently general combination of strain rate and flame curvature PDFs to give a single PDF of flame stretch rate, the nature of flame quenching under positive and negative stretch rates, flame responses to changing stretch rates and the effects of flame instabilities.  相似文献   

14.
Flat, pre mixed, laminar, and very O2-rich flames of C2H2 + O2 + N2 with [O2]/[O2]stoich  2.8 and a temperature 2000 K have been burned at atmospheric pressure. Trace amounts (13 ppm) of the metals Mg, Ba or A1 were added to the unburnt gases by nebulising an aqueous solution of a halide of the metal, so that e.g., Mg formed molecules of Mg(OH)2, MgOH and MgO, as well as free atoms of Mg. The relative abundances of these species were governed by well-characterised equilibria and consequently depended on the temperature and also the concentrations of the flame’s free radicals H, OH and O. Transmission electron microscopy showed that nanoparticles of the oxides of these metals formed from their pool of molecular species in these flames. Particle size distributions were also measured (much less tediously) with a mobility analyser (DMS 500, Cambustion) operating at 0.25 bara. The optimal way of continuously sampling the gases at a point along the flame’s axis was investigated and shown to require expanding the sample (to a pressure of 1/3 bara) supersonically through an orifice with a diameter greater than 0.4 mm. In addition, the sample had to be diluted with N2, with a volumetric flow rate of 10–20 times that of the sample, all at 1/3 bara. The sizes of oxide nanoparticles, as measured by transmission electron microscopy, agreed with the values of 6–10 nm from the mobility analyser. With Mg all the metal appeared very rapidly as nearly spherical nanoparticles of MgO early in a flame’s reaction zone. This was also true for Ba, which, according to thermodynamic considerations at the final temperature of the flame, should not form any particles of BaO. That particles do actually form is due to the reaction zone having a relatively low temperature and super-equilibrium concentrations of the free radicals H, OH and O. Aluminium was expected to form particles of A12O3. However, only a small fraction of the Al formed particles; this is attributed to the production of gas-phase molecules of Al2O3 (i.e., the nuclei) from AlO and AlO2 being by a relatively slow three-body reaction, as well as Al2O3 being a very minor member of the gas-phase pool of molecular species containing Al.  相似文献   

15.
Time-resolved fluorescence measurements are reported for the OH radical in the flame fronts of laminar atmospheric pressure flames. Effective (collision-limited) lifetimes were determined following excitation of theA 2+, = 0 state of OH using a picosecond dye-laser system based on the distributed-feedback principle. Measurements were made in a premixed knife-edge burner for rich CH4/N2O/N2 and CH4/air flames and in a counterflow diffusion burner for a CH4/air flame. In the accessible range, results indicate a net dependence of lifetime on temperature intermediate betweenT andT 0.5 for these flames.  相似文献   

16.
Intracavity laser absorption spectroscopy (ICLAS) is used to measure the absolute concentration profiles of HCO and C2 in low-pressure acetylene/oxygen/nitrogen flames with equivalence ratios ϕ=0.8, 1.0, 1.5, 2.0 and 2.5. The flames with ϕ=2.0 and 2.5 are soot-producing, with light extinction reaching 0.1% per pass in the flame with ϕ=2.5. This strong broadband extinction does not affect the sensitivity of ICLAS, however. The temperature profiles of the flames were measured using laser-induced fluorescence of the OH radicals. For C2 concentration measurements, the (0–2) vibronic transition of the Swan band is used. The lines of this transition are located close to the HCO lines, making it possible to measure the two radical concentrations simultaneously. The C2 concentration is highest in the ϕ=1.5 flame, and lower in the lean and heavily sooted ϕ=2.5 flames. PACS  33.20.Kf; 33.70.Fd; 42.60.Da  相似文献   

17.
The ignition process, mode of combustion and reaction front propagation in a partially premixed combustion (PPC) engine running with a primary reference fuel (87% iso-octane, 13% n-heptane by volume) is studied numerically in a large eddy simulation. Different combustion modes, ignition front propagation, premixed flame and non-premixed flame, are observed simultaneously. Displacement speed of CO iso-surface propagation describes the transition of premixed auto-ignition to non-premixed flame. High temporal resolution optical data of CH2O and chemiluminescence are compared with simulated results. A high speed ignition front is seen to expand through fuel-rich mixture and stabilize around stoichiometry in a non-premixed flame while lean premixed combustion occurs in the spray wake at a much slower pace. A good qualitative agreement of the distribution of chemiluminescence and CH2O formation and destruction shows that the simulation approach sufficiently captures the driving physics of mixed-mode combustion in PPC engines. The study shows that the transition from auto-ignition to flame occurs over a period of several crank angles and the reaction front propagation can be captured using the described model.  相似文献   

18.
Direct numerical simulation is a very powerful tool to evaluate the validity of new models and theories for turbulent combustion. In this paper, direct numerical simulations of spherically expanding premixed turbulent flames in the corrugated flamelet regime are performed. The flamelet-generated manifold method is used to deal with detailed reaction kinetics. The numerical method is validated for both laminar and turbulent expanding flames. The computational results are analyzed by using an extended flame stretch theory. It is investigated whether this theory is able to describe the influence of flame stretch and curvature on the local burning velocity of the flame. If the full profiles of flame stretch and curvature through the flame front are included in the theory, the local mass burning rate is predicted accurately. The influence of several approximations, which are used in other existing theories, is studied. When flame stretch is assumed to be constant through the flame front or when curvature of the flame front is neglected, the theory fails to predict the local mass burning rate.  相似文献   

19.
A detailed comparison has been conducted between chemiluminescence (CL) species profiles of OH?, CH?, and C2 ?, obtained experimentally and from detailed flame kinetics modeling, respectively, of atmospheric pressure non-premixed flames formed in the forward stagnation region of a fuel flow ejected from a porous cylinder and an air counterflow. Both pure methane and mixtures of methane with hydrogen (between 10 and 30 % by volume) were used as fuels. By varying the air-flow velocities methane flames were operated at strain rates between 100 and 350 s?1, while for methane/hydrogen flames the strain rate was fixed at 200 s?1. Spatial profiles perpendicular to the flame front were extracted from spectrograms recorded with a spectrometer/CCD camera system and evaluating each spectral band individually. Flame kinetics modeling was accomplished with an in-house chemical mechanism including C1–C4 chemistry, as well as elementary steps for the formation, removal, and electronic quenching of all measured active species. In the CH4/air flames, experiments and model results agree with respect to trends in profile peak intensity and position. For the CH4/H2/air flames, with increasing H2 content in the fuel the experimental CL peak intensities decrease slightly and their peak positions shift towards the fuel side, while for the model the drop in mole fraction is much stronger and the peak positions move closer to the fuel side. For both fuel compositions the modeled profiles peak closer to the fuel side than in the experiments. The discrepancies can only partly be attributed to the limited attainable spatial resolution but may also necessitate revised reaction mechanisms for predicting CL species in this type of flame.  相似文献   

20.
Steady propagation of premixed flames in straight channels is studied numerically using the on-shell approach. A first numerical algorithm for solving the system of nonlinear integro-differential on-shell equations is presented. It is based on fixed-point iterations and uses simple (Picard) iterations or the Anderson acceleration method that facilitates separation of different solutions. Using these techniques, we scan the parameter space of the problem so as to study various effects governing formation of curved flames. These include the thermal gas expansion and the finite-front-thickness effects, namely flame stretch, curvature, and compression. In particular, flame compression is demonstrated to have a profound influence on the flame, strongly affecting the dependence of its propagation speed on the channel width b. Specifically, the solutions found exhibit a sharp increase of flame speed with channel width. Under weak flame compression, this increase commences at bc ≈ 2 ~ 3, where λc is the cutoff wavelength, but this ratio becomes significantly larger as the flame compression grows. The results obtained are also used to identify limitations of the analytical approach based on the weak-nonlinearity assumption, and to revise the role of noise in flame evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号