首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The growth of ordered nanorods of mesoporous SBA-15 inside a porous alumina membrane has been achieved for the first time by a simple sol-gel method. The obtained SBA-15 nanorods themselves have ordered hexagonal mesochannels with a size of about 6 nm and have been arranged to form hexagonal arrays by the limitation of pores of the alumina membrane. The synthesized alumina membrane with mesoporous SBA-15 inside combines the advantages of porous alumina membranes and mesoporous SBA-15 and provides fine and vertical mesochannels, which may serve as a new and efficient mold and lead to extensive applications in nanodevice fabrication, biomacromolecule separations, etc.  相似文献   

2.
Cyclopentadienyl ruthenium phosphane and carbene complexes are grafted on the surface of mesoporous SBA-15 molecular sieves through an aminosilane linker. The nature of the support after the grafting is examined by powder XRD, TEM and N(2) adsorption/desorption analysis. Elemental analysis, FT-IR, DRIFTS, TG-MS and MAS-NMR studies confirm the successful grafting of the complexes on the surface. The grafted materials are applied for catalytic aldehyde olefination and cyclopropanation.  相似文献   

3.
Triblock copolymer, pluronic P123 (EO20PO70EO20) was used as the structure directing agent for the simple synthesis and characterization of mesoporous SBA-15 with various porosities. Extending the sample recrystallization time, after the initial synthesis and ageing, seems to have a significant effect on the pore size. It also leads to an increase in the surface area and a narrow pore size distribution. The prepared materials could find applications in areas where the diffusion of large molecules is important, and in catalysis, where greater pore accessibility would enhance the activity and selectivity of the catalyst. A possible mechanism has been proposed to describe the effect of extended recrystallization on pore sizes.  相似文献   

4.
SBA-15表面经嫁接方式引入氨基官能团,与Ni络合制备了SBA-15负载的Ni催化剂(Ni/SBA-15N)。同时,采用传统的浸渍法制备了具有相似Ni负载量的催化剂(Ni/SBA-15)。在负载量相近条件下,Ni/SBA-15N的Ni颗粒分散性均高于Ni/SBA-15。XRD和TPR结果表明,催化剂焙烧后,在氨化SBA-15表面,Ni以硅酸镍形式存在,而在SBA-15表面,Ni以NiO形式存在。Ni/SBA-15对氯苯催化加氢脱氯活性不随Ni负载量的变化而变化;而在Ni/SBA-15N中,Ni负载量增加,催化剂活性增加。  相似文献   

5.
聚环氧乙烯醚-聚环氧丙烯醚-聚环氧乙烯醚(EO20PO70EO20)三嵌段高分子为模板剂制备了SBA-15分子筛. 用3-氨丙基-三乙氧基硅烷对SBA-15进行改性, 改性后SBA-15表面上的氨基再与(+)-O,O'-二苯甲酰基-L-酒石酸酐(DBTA)进行酰化反应, 以酰胺键将该手性羧酸连接在SBA-15表面上. XRD和氮气吸附结果表明, 材料经过处理后仍然保持良好的孔性质; 13C和29Si魔角旋转核磁共振(MAS NMR)谱图表明, SBA-15与氨丙基化合物的作用是共价成键, 表面修饰度达25%; 从傅里叶变换红外(FTIR) 光谱可见, 有部分修饰氨基与DBTA成功地进行了酰化反应, 以一个羧基裸露的形式将该二元羧酸化合物连接在表面上; 从孔径分布图可知, 胺丙基修饰之后孔减小了1.5 nm, 与DBTA修饰后孔尺寸又减少0.5 nm, 说明胺丙基化合物是头对头垂直连接在Si表面上, 而酒石酸分子是采取平行方式侧卧在氨基表面.  相似文献   

6.
TEPA在SBA-15(P)上的嫁接形态及其对CO2吸附性能的影响   总被引:1,自引:0,他引:1  
通过控制浸渍方法和其过程将四乙烯五胺(TEPA)负载到SBA-15原粉上制备氨基功能化的CO2吸附材料TEPA/SBA-15(P).利用X射线衍射(XRD)、氮吸附、元素分析和傅里叶变换红外(FTIR)光谱等手段对各种吸附材料进行表征分析,并对其CO2吸附能力进行评价.结果表明:TEPA乙醇溶液的动态浸渍过程可以使有机胺高度均匀地负载到SBA-15(P)的孔道内,并形成有利于CO2吸脱附的键合形式.提出了TEPA在SBA-15(P)上的键合作用机制,一方面TEPA的端基氨(-NH2)与载体中的表面羟基(-OH)和醚键(C-O-C)形成氢键,提高了TEPA的分散度;另一方面,TEPA乙醇溶液的动态浸渍过程有效地避免了TEPA分子间或分子内氢键的形成,从而使有机胺TEPA氨基官能团具有较高的吸附容量.  相似文献   

7.
Electron inelastic mean free path can be obtained from a measured elastic peak electron spectroscopy spectrum combined with a Monte Carlo simulation. It is thus necessary to know the influence of various experimental factors to the measured and calculated results. This work investigates the effect of the surface roughness or the surface topography on the intensity of the elastic peak. A Monte Carlo simulation, by taking into account of realistic surface roughness for both Gaussian and non‐Gaussian type rough surfaces experimentally prepared, has been employed to study the surface topography effect. The simulations of elastic peak electron spectroscopy were performed for both planar and rough Al and Cu surfaces and for varied primary energies ranging from 200 to 2000 eV. To quantify the surface roughness effect, the surface roughness parameter is introduced according to the ratio of elastic peak intensities between a rough surface and an ideal planar surface. Simulation results have shown that surface roughness parameter is important in a certain range of emission angle and particularly for large emission angles. For grazing emission, the elastic peak intensity can be largely enhanced by roughness even at nanometer scale. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
As a typical volatile organic compound, toluene is a hazardous material for human health and the environment, and currently, the development of catalysts for its oxidation into CO2 and water is crucial. The series of Ag-CeO2/SBA-15 catalysts is synthesized by wetness impregnation techniques and characterized by a number of physical-chemical methods (nitrogen [N2] physisorption, small angle X-ray scattering [SAXS], transmission electron microscopy [TEM], and temperature-programmed reduction [TPR]). The toluene sorption and catalytic properties in toluene oxidation are studied. Small silver [Ag] and cerium oxide [ceria, CeO2] particles with sizes below 3 nm are predominantly formed in the ordered structure of Santa Barbara Amorphous-15 [SBA-15]. The interactions between the Ag and CeO2 nanoparticles are established. Temperature-programmed desorption of toluene [TPD-C7H8] analysis shows that physical adsorption of toluene occurs on pristine SBA-15 material, while the introduction of either silver or ceria to SBA-15 leads to the appearance of additional strongly bound chemisorbed toluene on such sites. When both Ag and CeO2 are introduced, only chemisorbed toluene is formed over the Ag-CeO2/SBA-15 catalyst, and the highest catalytic activity in toluene oxidation is observed over this catalyst (T98% = 233 °C, 0.2% C6H5CH3) that is attributed to the synergistic effect of ceria [CeO2] and silver [Ag].  相似文献   

9.
Mesoporous SBA-15 materials were functionalized with amine groups through postsynthesis and one-pot synthesis, and the resulting functionalized materials were investigated as matrixes for controlled drug delivery. The materials were characterized by FTIR, N(2) adsorption/desorption analysis, zeta potential measurement, XRD, XPS, and TEM. Ibuprofen (IBU) and bovine serum albumin (BSA) were selected as model drugs and loaded onto the unmodified and functionalized SBA-15. It was revealed that the adsorption capacities and release behaviors of these model drugs were highly dependent on the different surface properties of SBA-15 materials. The release rate of IBU from SBA-15 functionalized by postsynthesis is found to be effectively controlled as compared to that from pure SBA-15 and SBA-15 functionalized by one-pot synthesis due to the ionic interaction between carboxyl groups in IBU and amine groups on the surface of SBA-15. However, SBA-15 functionalized by one-pot synthesis is found to be more favorable for the adsorption and release of BSA due to the balance of electrostatic interaction and hydrophilic interaction between BSA and the functionalized SBA-15 matrix.  相似文献   

10.
Mesostructured silica SBA-15 materials with different structural parameters, such as pore size, pore volume, and wall thickness, etc., were prepared by varying the postsynthesis hydrothermal treatment temperature and adding inorganic salts. The hydrothermal stabilities of these materials in steam (100% water vapor) were systematically investigated using a variety of techniques including powder X-ray diffraction, transmission electron microscopy, nitrogen sorption, and (29)Si solid-state NMR. The effect of the pore size, microporosity or mesoporosity, and wall thickness on the stability was discussed. The results show that all of the SBA-15 materials have a good hydrothermal stability under steam of 600 degrees C for at least 24 h. N(2) sorption measurements show that the Brumauer-Emmett-Teller surface area of SBA-15 materials is decreased by about 62% after treatment under steam at 600 degrees C for 24 h. The materials with thicker walls and more micropores show relatively better hydrothermal stability in steam of 600 degrees C. Interestingly, we found that the microporosity of the mesostructured silica SBA-15 is a very important factor for the hydrothermal stability. To the materials with more micropores, the recombination of Si-O-Si bonds during the high-temperature steam treatment may not cause direct destruction to the wall structure. As a result, SBA-15 materials with more micropores show better stability in pure steam of 600 degrees C. Nevertheless, these materials are easily destroyed in steam of 800 degrees C for 6 h. Two methods to effectively improve the hydrothermal stability are introduced here: one is a high-temperature treatment, and another is a carbon-propping thermal treatment. Thermal treatment at 900 degrees C can enhance the polymerization degree of Si-O-Si bonds and effectively improve the hydrothermal stability of these SBA-15 materials in 800 degrees C steam for 12 h. But, this approach will cause very serious shrinkage of the mesopores, resulting in smaller pore diameter and low surface area. A carbon-propping thermal treating method was employed to enhance the polymerization of Si-O-Si bonds and minimize the serious shrinkage of mesopores at the same time. It was demonstrated to be an effective method that can greatly improve the hydrothermal stability of SBA-15 materials in 800 degrees C steam for 12 h. Furthermore, the SBA-15 materials obtained by using the carbon-propping method possess larger pores and higher surface area after the steam treatment at 800 degrees C compared to the materials from the direct thermal treatment method after the steam treatment.  相似文献   

11.
用表面光电压谱(SPS)和场诱导表面光电压谱(FISPS)技术对比研究了卟啉和介孔SBA-15及载有卟啉的介孔SBA-15的表面光伏特性.固载后同时显示了卟啉和介孔的光电压性质,但是光电压响应强度减弱,这是因为卟啉和介孔之间发生了电子传递的缘故.在外电场诱导下,它们的光伏响应强度随外加正电场光伏响应强度的增加而增强,随外加负电场光伏响应强度的增加而减弱.而装载后的SBA-15在334和425 nm处的光伏响应信号随外加电场的变化而有不同的变化.  相似文献   

12.
The vibrational properties of mesoporous silica (SBA-15) were investigated by deep ultraviolet (UV) Raman and infrared spectroscopies with and without the presence of platinum nanoparticles in the mesopores that were incorporated by sonication. Raman and IR spectral line assignments were made by comparison to amorphous silicas. This procedure permitted identification of vibrations of longitudinal (LO) and transverse (TO) optical lattice modes, the presence of Si-OH, and vibrational modes associated with the presence of three-, four-, and six-membered siloxane rings. Hydraulic pressing of the mesoporous silica with pressure in the range 3-7 tons cm(-2) destroys the X-ray diffraction pattern and strongly decreases the Raman peak (D2) associated with three-membered rings at the surface. In the presence of platinum nanoparticles in the silica mesopores, a peak attributed to a Pt-O stretching vibration appears at between 530 and 580 cm(-1) in the UV-Raman spectrum, which can be used to monitor the presence of the platinum particles and their interaction with the support. The D2 feature in the UV-Raman spectra also decreases with increasing Pt loading, which is attributed to interactions of the Pt nanoparticles with the silica surface.  相似文献   

13.
Solvatochromic Reichardt's dye has been covalently anchored to both aniline-functionalized and propylamine-functionalized SBA-15 mesoporous silicas. The former offers a rigid linker to the surface; the latter offers a flexible one. The optical properties of immobilized dye in the presence of various vapors and gases were investigated by means of in situ diffuse reflectance UV-visible spectroscopy. The nature of the linker (rigid or flexible), used to covalently immobilize the dye, was found to play a significant role in determining the solvatochromic response of the chromophore to molecules. The use of the rigid linker, which reduces dye-support secondary interactions, represents a significant improvement in view of sensing applications, due to the stronger effects of the interaction with molecules from the gas or vapor phase on the visible absorption spectrum. This study provides a direct observation of the effect of linker flexibility on the behavior of anchored species.  相似文献   

14.
Mesoporous silica SBA-15 was modified in a three-step process to obtain a material with poly-N-isopropylacrylamide (PNIPAAM) grafted onto the inner pore surface. Water sorption calorimetry was implemented to characterize the materials obtained after each step regarding the porosity and surface properties. The modification process was carried out by (i) increasing the number of surface silanol groups, (ii) grafting 1-(trichlorosilyl)-2-(m-/p-(chloromethylphenyl) ethane, acting as an anchor for (iii) the polymerization of N-isopropylacrylamide. Water sorption isotherms and the enthalpy of hydration are presented. Pore size distributions were calculated on the basis of the water sorption isotherms by applying the BJH model. Complementary measurements with nitrogen sorption and small-angle X-ray diffraction are presented. The increase in the number of surface silanol groups occurs mainly in the intrawall pores, the anchor is mainly located in the intrawall pores, and the intrawall pore volume is absent after the surface grafting of PNIPAAM. Hence, PNIPAAM seals off the intrawall pores. Water sorption isotherms directly detect the presence of intrawall porosity. Pore size distributions can be calculated from the isotherms. Furthermore, the technique provides information regarding the hydration capability (i.e., wettability of different chemical surfaces) and thermodynamic information.  相似文献   

15.
Phase behavior of normal decane-dodecane(n-C10H22-C12H26,C10-C12) system confined in SBA-15(Santa Barbara Amorphous,pore diameters 3.8,7.8,and 17.2 nm) has been studied by using differential scanning calorimetry.It has been found solid-liquid phase diagram of the C10-C12/SBA-15 system is composed of a straight line(3.8 nm),a curve(7.8 nm) and a loop line (17.2 nm).The growth of the phase diagram clearly shows the size effect on phase behavior of binary alkanes.Phase behavior has been compared among the systems C10H22-C12H26/SBA-15,C12H26-C14H30/SBA-15 and C14H30-C16H34/SBA-15.  相似文献   

16.
17.
Strategic synthesis of SBA-15 nanorods   总被引:1,自引:0,他引:1  
A simple synthesis of homogeneously sized, ordered mesoporous silica nanorods (SBA-15), spanning about 10 porous channels in width and ranging from 300 to 600 nm in length is reported.  相似文献   

18.
The selective oxidation of ethane over pure SBA-15 and V/SBA-15 were theoretically studied by density functional theory. The cluster models of pure SBA-15 and V/SBA-15 were proposed. The structure properties of these two models were calculated and were found to be in good agreement with experimental values. The catalytic reaction pathways for the ethane oxidation to acetaldehyde and ethylene were determined. Our results show that the hydroxyl groups on pure SBA-15 can activate the gas-phase O2 to form a peroxide species, which acts as the active site for the selective oxidation of ethane. The formation of ethylene is much more preferred than that of acetaldehyde over pure SBA-15. For V/SBA-15, the peroxide species also acts as the active center. The energy barrier of C–H bond activation over V/SBA-15 is by 14.63 kJ/mol lower than that over pure SBA-15. The formation of acetaldehyde is preferred than that of ethylene over V/SBA-15. On the basis of our results, the reaction mechanisms of ethane selective oxidation over pure SBA-15 and V/SBA-15 were systematically compared and discussed. The theoretical results in this study are in good agreement with our previous experimental results. They can reasonably explain the catalytic nature of pure SBA-15 and the effect of vanadium, opening new perspectives in the understanding of the chemistry of SBA-15.  相似文献   

19.
Partial oxidation of n-heptane to syngas at 400–450°C was investigated over Rh and Rh-Ni based catalysts. The Rh/-Al2O3 catalyst exhibited much better catalytic activity than the Rh-Ni/-Al2O3 catalyst. A combination of the Rh-based catalyst with the WGS reaction catalyst (Fe3O4—Cr2O3) increases the hydrogen selectivity but has no distinct effect on shifting the balance of the partial oxidation of n-heptane.This revised version was published online in December 2005 with corrections to the Cover Date.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号