首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present paper we analyse a finite element method for a singularly perturbed convection–diffusion problem with exponential boundary layers. Using a mortaring technique we combine an anisotropic triangulation of the layer region (into rectangles) with a shape regular one of the remainder of the domain. This results in a possibly non-matching (and hybrid), but layer adapted mesh of Shishkin type. We study the error of the method allowing different asymptotic behaviour of the triangulations and prove uniform convergence and a supercloseness property of the method. Numerical results supporting our analysis are presented.  相似文献   

2.
This article is devoted to the study of a hybrid numerical scheme for a class of singularly perturbed parabolic convection-diffusion problems with discontinuous convection coefficients. In general, the solutions of this class of problems possess strong interior layers. To solve these problems, we discretize the time derivative by the backward-Euler method and the spatial derivatives by a hybrid finite difference scheme (a proper combination of the midpoint upwind scheme in the outer regions and the classical central difference scheme in the interior layer regions) on a layer resolving piecewise-uniform Shishkin mesh. It is proved that the method converges uniformly in the discrete supremum norm with almost second-order spatial accuracy. Moreover, an optimal order of convergence (up to a logarithmic factor) is obtained inside the layer regions. Extensive numerical experiments are conducted to support the theoretical results and also, to demonstrate the accuracy of this method.  相似文献   

3.
An error analysis for a newly defined uniparametric family of stiffly accurate Runge-Kutta collocation methods when applied to initial value problems for singularly perturbed differential equations is carried out. The so-called SAFERK methods possess a first internal stage of explicit type and are based on collocation nodes. Sharp convergence results are obtained for these methods through the analysis of a sequence of higher index Differential Algebraic Equations. A numerical test with the Van der Pol oscillator reveals that the proposed error estimates are realistic whenever the stepsize h is large enough compared to the stiffness parameter ε.  相似文献   

4.
5.
Summary A nonsymmetric discontinuous Galerkin finite element method with interior penalties is considered for two–dimensional convection–diffusion problems with regular and parabolic layers. On an anisotropic Shishkin–type mesh with bilinear elements we prove error estimates (uniformly in the perturbation parameter) in an integral norm associated with this method. On different types of interelement edges we derive the values of discontinuity–penalization parameters. Numerical experiments complement the theoretical results.  相似文献   

6.
Cheng  Yao 《Numerical Algorithms》2019,80(4):1329-1359
Numerical Algorithms - In this paper, we present the optimal L2-norm error estimate of the local discontinuous Galerkin method based on the generalized alternating numerical flux for nonlinear...  相似文献   

7.
In this paper, we propose a positivity-preserving conservative scheme based on the virtual element method (VEM) to solve convection–diffusion problems on general meshes. As an extension of finite element methods to general polygonal elements, the VEM has many advantages such as substantial mathematical foundations, simplicity in implementation. However, it is neither positivity-preserving nor locally conservative. The purpose of this article is to develop a new scheme, which has the same accuracy as the VEM and preserves the positivity of the numerical solution and local conservation on primary grids. The first step is to calculate the cell-vertex values by the lowest-order VEM. Then, the nonlinear two-point flux approximations are utilized to obtain the nonnegativity of cell-centered values and the local conservation property. The new scheme inherits both advantages of the VEM and the nonlinear two-point flux approximations. Numerical results show that the new scheme can reach the optimal convergence order of the virtual element theory, that is, the second-order accuracy for the solution and the first-order accuracy for its gradient. Moreover, the obtained cell-centered values are nonnegative, which demonstrates the positivity-preserving property of our new scheme.  相似文献   

8.
This article presents the study of singularly perturbed parabolic reaction–diffusion problems with boundary layers. To solve these problems, we use a modified backward Euler finite difference scheme on layer adapted nonuniform meshes at each time level. The nonuniform meshes are obtained by equidistribution of a positive monitor function, which involves the second-order spatial derivative of the singular component of the solution. The equidistributing monitor function at each time level allows us to use this technique to non-linear parabolic problems. The truncation error and the stability analysis are obtained. Parameter–uniform error estimates are derived for the numerical solution. To support the theoretical results, numerical experiments are carried out.  相似文献   

9.
10.
We consider a numerical scheme for a one-dimensional, time-dependent, singularly perturbed convection–diffusion problem. The problem is discretized in space by a standard finite element method on a Bakhvalov–Shishkin type mesh. The space error is measured in an L2 norm. For the time integration, the implicit midpoint rule is used. The fully discrete scheme is shown to be convergent of order 2 in space and time, uniformly in the singular perturbation parameter.  相似文献   

11.
A procedure for the construction of robust, upper bounds for the error in the finite element approximation of singularly perturbed reaction–diffusion problems was presented in Ainsworth and Babuška (SIAM J Numer Anal 36(2):331–353, 1999) which entailed the solution of an infinite dimensional local boundary value problem. It is not possible to solve this problem exactly and this fact was recognised in the above work where it was indicated that the limitation would be addressed in a subsequent article. We view the present work as fulfilling that promise and as completing the investigation begun in Ainsworth and Babuška (SIAM J Numer Anal 36(2):331–353, 1999) by removing the obligation to solve a local problem exactly. The resulting new estimator is indeed fully computable and the first to provide fully computable, robust upper bounds in the setting of singularly perturbed problems discretised by the finite element method.  相似文献   

12.
A grid approximation of a boundary value problem for a singularly perturbed elliptic convection–diffusion equation with a perturbation parameter ε, ε ∈ (0,1], multiplying the highest order derivatives is considered on a rectangle. The stability of a standard difference scheme based on monotone approximations of the problem on a uniform grid is analyzed, and the behavior of discrete solutions in the presence of perturbations is examined. With an increase in the number of grid nodes, this scheme does not converge -uniformly in the maximum norm, but only conditional convergence takes place. When the solution of the difference scheme converges, which occurs if N 1 -1 N 2 -1 ? ε, where N 1 and N 2 are the numbers of grid intervals in x and y, respectively, the scheme is not -uniformly well-conditioned or ε-uniformly stable to data perturbations in the grid problem and to computer perturbations. For the standard difference scheme in the presence of data perturbations in the grid problem and/or computer perturbations, conditions imposed on the “parameters” of the difference scheme and of the computer (namely, on ε, N 1,N 2, admissible data perturbations in the grid problem, and admissible computer perturbations) are obtained that ensure the convergence of the perturbed solutions as N 1,N 2 → ∞, ε ∈ (0,1]. The difference schemes constructed in the presence of the indicated perturbations that converges as N 1,N 2 → ∞ for fixed ε, ε ∈ (0,1, is called a computer difference scheme. Schemes converging ε-uniformly and conditionally converging computer schemes are referred to as reliable schemes. Conditions on the data perturbations in the standard difference scheme and on computer perturbations are also obtained under which the convergence rate of the solution to the computer difference scheme has the same order as the solution of the standard difference scheme in the absence of perturbations. Due to this property of its solutions, the computer difference scheme can be effectively used in practical computations.  相似文献   

13.
14.
A system of two coupled singularly perturbed convection–diffusion ordinary differential equations is examined. The diffusion term in each equation is multiplied by a small parameter, and the equations are coupled through their convective terms. The problem does not satisfy a conventional maximum principle. Its solution is decomposed into regular and layer components. Bounds on the derivatives of these components are established that show explicitly their dependence on the small parameter. A numerical method consisting of simple upwinding and an appropriate piecewise-uniform Shishkin mesh is shown to generate numerical approximations that are essentially first order convergent, uniformly in the small parameter, to the true solution in the discrete maximum norm.   相似文献   

15.
We propose a hybrid numerical scheme to discretize a class of singularly perturbed parabolic reaction–diffusion problems with robin-boundary conditions on an equidistributed grid. The hybrid difference scheme is developed by using a modified backward difference scheme in time, a combination of the cubic spline and exponential spline difference scheme in space. The proposed scheme uses a cubic spline difference scheme for the discretization of robin-boundary conditions. For the time discretization of the problem, we use the standard uniform mesh while a layer adapted equidistributed grid is generated for the spatial discretization. By equidistributing a curvature-based monitor function, the spatial adaptive grid is able to capture the presence of parabolic boundary layers without using any prior information about the solution. Parameter uniform error estimates are derived to illustrate an optimal convergence of first-order in time and second-order in space for the proposed discretization. The accuracy of the proposed scheme is confirmed by the numerical experiments that underpin the theoretical analysis.  相似文献   

16.
A singularly perturbed elliptic convection–diffusion equation with a perturbation parameter ε (ε ∈ (0, 1]) is considered on a rectangle. As applied to this equation, a standard finite difference scheme on a uniform grid is studied under computer perturbations. This scheme is not ε-uniformly stable with respect to perturbations. The conditions imposed on a “computing system” are established under which a converging standard scheme (referred to as a computer difference scheme) remains stable.  相似文献   

17.
Quasi-optimal error estimates are derived for the continuous-time orthogonal spline collocation (OSC) method and also two discrete-time OSC methods for approximating the solution of 1D parabolic singularly perturbed reaction–diffusion problems. OSC with C1 splines of degree r ≥ 3 on a Shishkin mesh is employed for the spatial discretization while the Crank–Nicolson method and the BDF2 scheme are considered for the time-stepping. The results of numerical experiments validate the theoretical analysis and also exhibit additional quasi-optimal results, in particular, superconvergence phenomena.  相似文献   

18.
In this paper we construct and analyze two compact monotone finite difference methods to solve singularly perturbed problems of convection–diffusion type. They are defined as HODIE methods of order two and three, i.e., the coefficients are determined by imposing that the local error be null on a polynomial space. For arbitrary meshes, these methods are not adequate for singularly perturbed problems, but using a Shishkin mesh we can prove that the methods are uniformly convergent of order two and three except for a logarithmic factor. Numerical examples support the theoretical results. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
1IntroductionThebase0fadaPtivecomputing0ffiniteelementmethodisap0steri0rierr0restimates.I.Babuskaisthepioneerinthisfields.Manytechniquesaredevel0pedtoobtainaposteri0rierrorestimators.See[1-3,7-8,19-201.Theyaremainlybased0nthejumps0fthederiva-tivesontheboundariesoftl1eelel11elltandtheresidualintheelemellts.Recelltresultssh0wthatthereareveryclosedrelatiollsbetweellasymptoticexactap0steri0rierrorestimatesandsuperc0nvergence-SeealsoQ.Linetal.[11-13],andChen-Huang['].Therehasbeenmuchprogressill…  相似文献   

20.
In this paper,we discuss the multi-scale homogenization theory for the second order elliptic problems with small periodic coefficients of the form xi(aij(xε) uεx(jx)) = f(x).Assuming n = 2 and u0 ∈ W 1,∞(Ω),we present an error estimate between the homogenization solution u0(x) and the exact solution uε(x) on the Sobolev space L∞(Ω).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号