首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An hypothesis for melanoma induction is presented: UV radiation absorbed by melanin in melanocytes generates products that may activate the carcinogenic process. Products formed by UV absorption in the upper layers of the epidermis cannot diffuse down as far as to the melanocytes. Thus, melanin in the upper layer of the skin may be protective, while that in melanocytes may be photocarcinogenic. Observations that support this hypothesis include: (1) Africans with dark skin have a reduced risk of getting all types of skin cancer as compared with Caucasians, but the ratio of their incidence rates of cutaneous malignant melanoma to that of squamous cell carcinoma is larger than the corresponding ratio for Caucasians. (2) Albino Africans, as compared with normally pigmented Africans, seem to have a relatively small risk of getting cutaneous malignant melanomas compared to nonmelanomas. This is probably also true for albino and normally pigmented Caucasians. (3) Among sun-sensitive, poorly tanning persons, frequent UV exposures are associated with increased risk of melanoma, whereas among sun-resistant, well-tanning persons, increased frequency of exposure is associated with decreased melanoma risk. (4) It is likely that UVA, being absorbed by melanin, might have a melanoma-inducing effect. This is in agreement with some epidemiological investigations which indicate that sun-screen lotions may not protect sufficiently against melanoma induction. The relative latitude gradient for UVA is much smaller than that for UVB. The same is true for the relative latitude gradient of cutaneous malignant melanoma as compared with squamous cell carcinoma and basal cell carcinoma. Under the assumption that the average slopes of the curves relating incidence rates with fluences of carcinogenic UV radiation are similar for melanomas and nonmelanomas, these facts are in agreement with the assumption that UVA plays a significant role in the induction of melanomas in humans. This is in agreement with the experimental results with Xiphophorus.  相似文献   

2.
Exposure to ultraviolet radiation has commonly been recognized as the most important environmental risk factor for melanoma. The measurement of UV exposure in humans, however, has proved challenging. Despite the general appreciation that an objective metric for individual UV exposure is needed to properly assess melanoma risk, little attention has been given to the issue of accuracy of UV exposure measurement. The present research utilized a GIS based historical UV exposure model (for which the accuracy of exposure estimates is known) and examined, in the case-control setting, the relative importance of UV exposure compared to self-reported time spent outdoors, in melanoma risk. UV estimates were coupled with residential histories of 820 representative melanoma cases among non-Hispanic white residents under 65 years of age from Los Angeles County and for 877 controls matched to cases by age, sex, race, and neighborhood of residence, to calculate the cumulative lifetime UV exposure and average annual UV exposure. For historical measures, when the participants resided outside the US, we also calculated UV estimates. While there was no increased risk of melanoma associated with self-reported time spent outdoors, the association between annual average UV exposure based on residential history and melanoma risk was substantial, as was the association between cumulative UV exposure based on residential history and melanoma. The time spent in outdoor activities appeared to have no significant effect on melanoma risk in any age strata, however, when adjusted for UV exposure based on residential history, time spent outdoors during young age significantly increased risk for melanoma. While there was some attenuation of risk when we excluded data from people resident overseas (as all other studies we are aware of have done), this did not significantly impact subsequent risk estimates of UV exposure on melanoma.  相似文献   

3.
Melanoma is a serious form of skin cancer that begins in cells known as melanocytes. While it is less common than the other forms of skin cancer, melanoma is more dangerous because of its ability to spread to other organs more rapidly if it is not treated at an early stage. The number of people diagnosed with melanoma has increased over the last few decades. The most widely used treatments include surgery, chemotherapy, and radiation therapy. The search for new drugs to treat various cancers is one of the most important challenges of modern scientific research. Some isoquinoline alkaloids found in different plant species have strong cytotoxic effects on various cancer cells. We tested the effect of isoquinoline alkaloids and extracts obtained from various parts of Mahonia aquifolium collected in various vegetation seasons on human melanoma cancer cells and our data indicated that investigated extract induced significant reduction in cell viability of Human malignant melanoma cells (A375), human Caucasian malignant melanoma cell line (G361), and human malignant melanoma cell line (SKMEL3 cancer cell lines in a dose- and time-dependent manner. Differences in cytotoxic activity were observed for extracts obtained from various parts of Mahonia aquifolium. Significant differences were also obtained in the alkaloids content and cytotoxic activity of the extracts depending on the season of collection of plant material. Our investigations exhibit that these plant extracts can be recommended for further in vivo experiments in order to confirm the possibility of their use in the treatment of human melanomas.  相似文献   

4.
We investigated the associations between latitude and the incidence of two different types of ocular melanoma, external ocular melanoma (exposed to sunlight) and internal melanoma (not exposed to sunlight), separately. Using 1992-2002 data from the Surveillance, Epidemiology, and End Results (SEER) Program of National Cancer Institute, we identified 2142 ocular melanoma cases in non-Hispanic whites, and then regressed the incidences of various types of ocular melanomas with latitude. Our analysis indicated that the higher the latitude (away from the equator, the less sun exposure), the lower the risk of external ocular melanoma (eyelid and conjunctival melanomas) among non-Hispanic whites (P for trend = 0.018). The incidence increased 2.48 fold from 47-48 degrees to 20-22 degrees. This trend is very similar to that of skin melanoma. The incidence of internal ocular melanoma (uveal melanoma) increased significantly with increasing latitudes (the less sun exposure, P for trend < 0.0001), it increased 4.91 fold from 20-22 degrees to 47-48 degrees. The latitudinal patterns of ocular melanomas may reflect the dual effects of sunlight exposure, i.e. a mutagenic effect of direct solar radiation on external ocular melanomas and a protective effect for internal uveal melanoma, which is similar to the sun radiation protective effects for various internal malignant tumors that are not exposed to the sunlight.  相似文献   

5.
The epidemiology of UV induced skin cancer.   总被引:15,自引:0,他引:15  
There is persuasive evidence that each of the three main types of skin cancer, basal cell carcinoma (BCC), squamous cell carcinoma (SCC) and melanoma, is caused by sun exposure. The incidence rate of each is higher in fairer skinned, sun-sensitive rather than darker skinned, less sun-sensitive people; risk increases with increasing ambient solar radiation; the highest densities are on the most sun exposed parts of the body and the lowest on the least exposed; and they are associated in individuals with total (mainly SCC), occupational (mainly SCC) and non-occupational or recreational sun exposure (mainly melanoma and BCC) and a history of sunburn and presence of benign sun damage in the skin. That UV radiation specifically causes these skin cancers depends on indirect inferences from the action spectrum of solar radiation for skin cancer from studies in animals and the action spectrum for dipyrimidine dimers and evidence that presumed causative mutations for skin cancer arise most commonly at dipyrimidine sites. Sun protection is essential if skin cancer incidence is to be reduced. The epidemiological data suggest that in implementing sun protection an increase in intermittency of exposure should be avoided, that sun protection will have the greatest impact if achieved as early as possible in life and that it will probably have an impact later in life, especially in those who had high childhood exposure to solar radiation.  相似文献   

6.
Chemoresistance is a major problem in the treatment of malignant melanoma. The mainstay of treatment for melanoma is the DNA-alkylating agent dacarbazine (DTIC). Fotemustine (FM), a member of the chloroethylnitrosourea group of alkylating agents, has also demonstrated significant antitumor effects in malignant melanoma. However, the intrinsic and acquired resistance of melanoma limits the clinical application of these drugs. Melanomas are also extremely radioresistant. With the objective of enhancing growth inhibition of melanoma cells, combined treatments of FM or DTIC with proton irradiation have been investigated. These effects were studied on HTB140 melanoma cell viability and proliferation. Cells exposed to treatment with FM and protons have shown inhibition of cell growth and significant reduction of proliferation capacity compared to single irradiation or drug treatment. Treatment with DTIC and protons has shown improved growth inhibition compared to appropriate single drug treatment, while the effects of single proton irradiation have been the most pronounced. The text was submitted by the authors in English.  相似文献   

7.
Xeroderma pigmentosum (XP) is a rare autosomal recessive hereditary disease caused by deficiency in repair of DNA lesions generated by ultraviolet radiation and other compounds. Patients with XP display pigmentary change and numerous skin cancers in sun‐exposed sites, and some patients show exaggerated severe sunburns even upon minimum sun exposure as well as neurological symptoms. We conducted a nationwide survey for XP since 1980. In Japan, the frequency of the XP complementation group A is the highest, followed by the variant type; while in the Western countries, those of groups C or D are the highest. Regarding skin cancers in XP, basal cell carcinoma was the most frequent cancer that afflicted patients with XP, followed by squamous cell carcinoma, and malignant melanoma. The frequency of these skin cancers in patients with XP has decreased in these 20 years, and the age of onset of developing skin cancers is higher than those previously observed, owing to early diagnosis and education to patients and care takers on strict prevention from sunlight for patients with XP. On the other hand, the effective therapy for neurological XP has not been established yet, and this needs to be done urgently.  相似文献   

8.
The risk of keratinocyte skin cancer, malignant melanoma and ultraviolet radiation (UVR)‐induced eye disease is disproportionately higher in Australia and New Zealand compared to equivalent northern hemisphere latitudes. While many teachers are aware of the importance of reinforcing sun safety messages to students, many may not be aware of the considerable personal exposure risk while performing outdoor duties in locations experiencing high to extreme ambient UVR year‐round. Personal erythemally effective exposure of classroom teachers in tropical Townsville (19.3°S) was measured to establish seasonal extremes in exposure behavior. Mean daily personal exposure was higher in winter (91.2 J m‐2, 0.91 Standard Erythema Dose [SED]) than summer (63.3 J m?2, 0.63 SED). The range of exposures represents personal exposures that approximate current national guidelines for Australian workers at the study latitude of approximately 1.2 SED (30 J m?2 effective to the International Commission on Non‐Ionizing Radiation Protection). Similar proportions of teachers spent more than 1 h outdoors per day in winter (28.6%) and summer (23.6%) as part of their teaching duties with seasonal differences having little effect on the time of exposure. Personal exposures for teachers peaked during both seasons near school meal break times at 11:00 am and 1:00 pm, respectively.  相似文献   

9.
There are two different types of ocular melanocytes and melanomas. Conjunctival melanocytes are located on the surface of the eye and are exposed to visible light and UV radiation. Recently, epidemiological studies demonstrated that sunlight plays a definite role in the occurrence of conjunctival melanoma, as it does in cutaneous melanoma. Uveal melanocytes consist of the iridal melanocytes, which are exposed to visible light and UV radiation; and the ciliary body melanocytes and choroidal melanocytes, which are not exposed to light radiation. Epidemiological studies demonstrated that sunlight may play a role in the occurrence of iridal melanoma, but may not be a major factor in the etiology of ciliary body and choroidal melanomas. Uveal melanocytes differ from epidermal melanocytes in that epidermal melanocytes respond to UV radiation and skin color becomes darker after exposure to sunlight; but uveal melanocytes do not respond to UV radiation and the iris color remains stable after exposure to sunlight. Recently, in vitro studies indicate that this phenomenon is determined both by cellular factors and environmental factors.  相似文献   

10.
The most recent data relating to the incidence of, and mortality from, the three commonest forms of skin cancer, namely basal cell carcinoma (BCC), squamous cell carcinoma (SCC) and cutaneous melanoma (CM), in the Black African, Colored, Asian/Indian and White population groups in South Africa are reviewed. While exposure to solar ultraviolet radiation is the major environmental risk factor for BCC in all four groups, for SSC in the White and Asian/Indian groups and for CM in the White group, this is unlikely to be the case for most SCCs in the Black African group and for most CMs in the Black African and Asian/Indian groups. Strategies for practical personal photoprotection in South Africa are discussed with particular emphasis on people at heightened risk of skin cancer including the White population group, those with HIV or oculocutaneous albinism and outdoor workers.  相似文献   

11.
An Animal Model for Human Melanoma   总被引:1,自引:0,他引:1  
Abstract— Experimental animal models that are directly relevant to human melanoma are lacking. We propose the Angora goat as a potentially useful field model with experimental potential and to this end have examined the prevalence and site distribution of all skin cancers in 28 Angora goat herds in Queensland, Australia. The prevalence of benign melanocytic lesions (lentigines) and their experimental induction by sunlight were also investigated. Among 1731 goats over 2 years of age, 139 malignant skin tumors were excised from 95 affected animals. The prevalence of squamous cell carcinoma (SCC) was 3.8% and of melanoma, 2.2%. Main site of occurrence of melanoma (83%) was the dorsal surface of the ear; in contrast SCC occurred mostly (84%) on the perineum. Lentigines were darker and more prevalent on the exposed compared with the unexposed surface of the ear in Angoras, analogous to the higher prevalence of nevi on the exposed compared with the less exposed inner surface of the arm in humans. Lentigines, which were also found on the perineum though lighter in color than on the dorsal ear, were absent in young animals under 3 months but were numerous in 1–3 year olds. Furthermore in an experimental substudy eight goats, having one flank repeatedly shorn and the contralateral flank left unshorn, revealed consistently more solar lentigines on the shorn flank ( P < 0.05) when both sides were examined after 9 months. Histopathological examination of paired skin biopsies from five of these goats also showed more abundant pigmentation in skin from the exposed, as compared with the unexposed flank. These findings indicate that sunlight induces tumors and lentigines in goats in a highly site-specific manner. The Angora goat model may suggest paradigms for explaining the site differences observed for human melanoma and may also be useful in the future clarification of molecular changes following carcinogenic levels of sun exposure.  相似文献   

12.
ULTRAVIOLET RADIATION - INDUCED MALIGNANT MELANOMA IN Monodelphis domestica   总被引:9,自引:0,他引:9  
Several lines of evidence support the hypothesis that ultraviolet radiation (UVR) is involved in the etiology of cutaneous melanoma in humans. However, progress in understanding the mechanisms involved in induction of melanotic tumors by UVR has been hindered by lack of a suitable animal model. During the course of multiple exposures (3 times/wk for 70 wk) of the South American opossum, Monodelphis domestica, to UVR, we first observed the appearance of areas of dermal melanocytic hyperplasia (MH) on the exposed skin. Post-UVR exposure to photoreactivating light (320-500 nm) suppressed the occurrence of MH. We also observed at 100 weeks from first exposure that 10 of 46 surviving animals had developed melanotic tumors which arose, presumably, from areas of MH. Tumors on three of the 10 animals have been classified as malignant melanomas based on metastasis to lymph nodes. We conclude from these results that UVR can act as a complete carcinogen for melanoma induction and, based on the photoreactivation of MH induction, that DNA damage is involved in melanoma formation.  相似文献   

13.
Malignant melanoma arises from epidermal melanocytes, the cells responsible for the production of the skin pigment melanin. The photoprotective role of melanin, which is transferred to neighboring keratinocytes, in UV-induced skin carcinogenesis, specifically in nonmelanoma skin cancers, has been well documented. Although melanocyte-resident melanin is expected to offer similar protection to melanocytes from UV-induced damage, UV radiation has long been suspected to have an etiologic role in cutaneous melanoma. However, nearly three decades of efforts using a variety of in vitro and in vivo models of human skin and mouse genetic models have produced conflicting data. Epidemiologic studies have also failed to establish a definitive association between UV exposure and risk of melanoma. In this review, we evaluate the dual role of the melanin pigment as a photoprotector as well as a photosensitizer and examine the evidence for association between melanin levels (constitutive and induced) and melanoma risk. We also discuss possible reasons for the lack of signature UV mutations in melanoma oncogenes known to date and potential alternative mechanisms to explain the role of UV in melanomagenesis.  相似文献   

14.
15.
Cutaneous malignant melanoma is a very serious form of skin cancer that arises from melanocytes. Currently there is no effective treatment for metastatic melanoma so intense clinical trials are evaluating new drugs for this human malignancy. Psoralens are a group of compounds that bind to DNA in rapidly dividing cells and with ultraviolet light in the A band (UVA) cause DNA crosslinking, thereby preventing cellular division. They are used in the treatment of psoriasis and cutaneous T-cell lymphoma among other skin and blood diseases. We have investigated the cytotoxic potential of three psoralen derivatives plus UVA exposure (PUVA) on a established cell line of human melanoma. Cells were treated with different concentrations of 8-methoxypsoralen (8-MOP), 4,5',8-trimethylpsoralen (TMP) and 7-methylpyridopsoralen (MPP), for 1 h and after exposure to UVA light (0.3 J/cm(2)) were allowed to recover over a 24-72 h period. Viability was assessed by the microculture 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay. Cisplatin, one of the most important drugs in the chemotherapy of melanoma, was included for comparative studies. All the psoralen derivatives tested were markedly cytotoxic in a dose and post-exposure-time dependent manner. The IC(50) values for 72 h of post-exposure time were as follows: MPP=0.05+/-0.01, TMP=0.13+/-0.003 and 8-MOP=10.79+/-1.85 micromol/L. Regardless of the limitations of the in vitro model, our results suggested that the lower IC(50) values of TMP and MPP might be of clinical importance.  相似文献   

16.
Melanins are ubiquitous catecholic pigments, formed in organelles called melanosomes within melanocytes, the function of which is to protect skin against harmful effects of UV radiation. Melanosomes within melanoma cells are characteristically abnormal, with fragmented melanin and disrupted membranes. We hypothesize that the disruption of melanosomal melanin might be an early event in the etiology and progression of melanoma, leading to increased oxidative stress and mutation. In this report, we examine the effect of a combination of UV treatment and metal ion exposure on melanosomes within melanocytes, as well as their ability to act as pro-oxidants in ex situ experiments, and assay the effects of this treatment on viability and cell cycle progression. UVB exposure causes morphologic changes of the cells and bleaching of melanosomes in normal melanocytes, both significantly enhanced in Cu(II) and Cd(II)-treated cells, as observed by microscopy. The promoted bleaching by Cu(II) is due to its ability to redox cycle under oxidative conditions, generating reactive oxygen species; verified by the observed enhancement of hydroxyl radical generation when isolated melanosomes were treated with both Cu(II) ions and UVB, as assayed by DNA clipping. Single-dose UVB/Cu treatment does not greatly affect cell viability or cell cycle progression in heavily pigmented cells, but did so in an amelanotic early stage melanoma cell line.  相似文献   

17.
The role of ultraviolet (UV) radiation in the induction of nonmelanoma skin cancer is widely accepted, although its precise contribution to the development of primary cutaneous melanoma skin cancer requires further definition. We found that painting aloe emodin, a trihydroxyanthraquinone from Aloe barbadensis, in ethyl alcohol vehicle on the skin of mice in conjunction with exposure to UVB (280-320 nm) radiation results in the development of melanin-containing skin tumors. C3H/HeN mice were treated thrice weekly with aloe emodin in a 25% ethanol in water vehicle and exposed to 15 kJ/m2 UV radiation. Neither ethanol vehicle nor aloe emodin alone induced skin tumors in the absence of UV radiation. In two separate experiments, 20-30% of the mice treated with a combination of UV radiation and ethanol vehicle and 50-67% of the UV-irradiated animals given aloe emodin in ethanol vehicle developed primary cutaneous melanin-containing tumors. The diagnosis of melanoma was established using Fontana silver stain for melanin; these tumors were negative for vimentin and keratin. Melanin-containing melanosomes were observed by transmission electron microscopy in tumors diagnosed as melanomas. Although the mechanism of carcinogenesis in these mice is currently unknown, our findings have led to the development of the first facile murine model for the induction of primary melanoma. This model has the potential to clarify the role of UV radiation in the etiology of malignant melanoma.  相似文献   

18.
Ultraviolet (UV) radiation, including both UVB and UVA irradiation, is the major risk factor for causing skin cancer including melanoma. Recently, we have shown that Sesn2, a member of the evolutionarily conserved stress‐inducible protein family Sestrins (Sesn), is upregulated in human melanomas as compared to melanocytes in normal human skin, suggesting an oncogenic role of Sesn2. However, the role of Sesn2 in UVB and UVA response is unknown. Here, we demonstrated that both UVB and UVA induce Sesn2 upregulation in melanocytes and melanoma cells. UVB induces Sesn2 expression through the p53 and AKT3 pathways. Sesn2 negatively regulates UVB‐induced DNA damage repair. In comparison, UVA induces Sesn2 upregulation through mitochondria but not Nrf2. Sesn2 ablation increased UVA‐induced Nrf2 induction and inhibits UVA‐induced ROS production, indicating that Sesn2 acts as an upstream regulator of Nrf2. These findings suggest previously unrecognized mechanisms in melanocyte response to UVB and UVA irradiation and potentially in melanoma formation.  相似文献   

19.
Humans undertake their daily activities in a number of different postures. This paper aims to compare the anatomical distribution of the solar erythemal UV to human legs for standing and sitting postures. The exposure ratios to the legs (ratio of the UV exposure to a particular anatomical site compared to the ambient) have been measured with UV dosimeters for standing and sitting postures of a manikin. The exposure ratios for the legs ranged from 0 to 0.75 for the different anatomical sites for the sitting posture in summer (December through February) compared to 0.14 to 0.39 for the standing posture. In winter (June through August) the exposure ratios ranged from 0.01 to 0.91 for sitting to 0.17 to 0.81 for standing. For the anterior thigh and shin, the erythemal UV exposures increased by a factor of approximately 3 for sitting compared to standing postures. The exposure ratios to specific anatomical sites have been multiplied by the ambient erythemal UV exposures for each day to calculate the annual exposures. The annual erythemal exposures to the anterior thigh and ankle were predicted to be higher than 800 MED for humans sitting outdoors each day between noon and 13:00 h Australian Eastern Standard Time (EST). For humans standing outdoors during this time, the annual erythemal UV exposure averaged over each leg site was 436 MED, whereas, the averaged annual erythemal UV exposure was 512 MED for the sitting posture. Similarly, the annual erythemal UV exposure averaged over each of the sites was 173 MED for humans standing outdoors between 09:00 h EST and noon each Saturday morning and 205 MED for humans sitting outdoors during this time. These results show that there is increased risk of non-melanoma skin cancer and malignant melanoma to the lower body if no UV preventative strategies are employed while in a sitting posture compared to a standing posture.  相似文献   

20.
Increased incidence of melanoma in the population with red hair is conditioned by synthesis of pheomelanin pigments in the skin and their phototoxic properties. The recent research has shown that free radicals of pheomelanin are produced not only by the influence of UV irradiation, but also in UV‐independent pathways of oxidative stress. It has been ascertained, that the color of the hair is not always determinant of the amount of pheolemanin radicals in red hair. Therefore, in order to evaluate the risk of melanoma in different individuals, it is necessary to define the amount of free radicals of pheomelanin in red hair using ESR spectroscopy method. Besides, it is very important to find effective antioxidant, capable of neutralizing free radicals of pheomelanin. It was proved that ascorbic acid neutralizes free radicals of pheomelanin very effectively. The main goal of our research was to define the presumably optimal concentration of ascorbic acid as an antioxidant and study the kinetics of the influence of this concentration on red and black hair. It has been found out, that ascorbic acid influences the free radicals of red and black hair, and its appropriate optimal concentration is 10 mM. The obtained results can be considered in dermatology and cosmetology. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号