首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Substituted polythiophene and triethylenglycolpyrrolidino-C(60) blends are examined by time-resolved electron paramagnetic resonance (TR-EPR) at different temperatures. TR-EPR spectra recorded on the microsecond time scale after a short laser pulse are assigned to polythiophene and fullerene radical ion pairs, generated by electron transfer from the excited state of polythiophene to fullerene. At low temperatures, TR-EPR spectra show polarized lines with an antiphase emission/absorption pattern. The origin of the polarization pattern is described in the frame of spin correlated radical pair theory, in which two unpaired electron spins (on radical cation and anion, respectively) interact through isotropic spin exchange and anisotropic dipolar interactions. The polarization pattern is accounted for assuming a singlet excited state as the precursor of the charge-separated state. Spectral simulations yield dipolar and spin exchange coupling constants between unpaired electrons of the radical ion pair. Their values correspond to a mean distance between opposite charges of 22 A. When the temperature is increased, the spectra gradually loose their antiphase character and eventually consist of a signal totally in emission. This behavior is explained by a polarization mechanism involving a spin-selective charge recombination (ST(-1) mixing). The polarization pattern at different temperatures is examined in detail, and its generating mechanism is discussed.  相似文献   

2.
The multiline signal from the S2-state manganese cluster in the oxygen evolving complex of photosystem II (PSII) was observed in single crystals of a thermophilic cyanobacterium Thermosynechococcus vulcanus for the first time by W-band (94 GHz) electron paramagnetic resonance (EPR). At W-band, spectra were characterized by the g-anisotropy, which enabled the precise determination of the tensor. Distinct hyperfine splittings (hfs's) as seen in frozen solutions of PSII at X-band (9.5 GHz) were detected in most of the crystal orientations relative to the magnetic field. In some orientations, however, the hfs's disappeared due to overlapping of a large number of EPR lines from eight crystallographic symmetry-related sites of the manganese cluster within the unit cell of the crystal. Analysis of the orientation-dependent spectral features yielded the following g-tensor components: g(x) = 1.988, g(y) = 1.981, g(z) = 1.965. The principal values suggested an approximate axial symmetry around the Mn(III) ion in the cluster.  相似文献   

3.
Time-resolved electron paramagnetic resonance (TREPR) spectra of spin-polarized transient radicals in liquid solution, generated in a continuous flow-system of a W-band (95 GHz) high-field (3.4 T) EPR spectrometer, are reported. The organic free radicals are created by laser flash photolysis of ω,ω-dimethoxy-ω-phenylacetophenone (DMPA) and diphenyl-2,4,6-trimethylbenzoil phosphine oxide (TMDPO) inside the microwave cavity, and are observed at 10 ns to 20 μs delay times after the laser pulse. The analysis of the positions of the well-separated EPR signals at W-band yields the g-values of the observable transients with high accuracy. The chemically induced dynamic electron polarization (CIDEP) patterns are different from those in conventional X-band (9.5 GHz) EPR. This is due to different spin relaxation times at different magnetic fields, to field-dependent CIDEP mechanisms operating in the studied systems, and to the increased Boltzmann polarization at high fields.  相似文献   

4.
The hyperfine structures of the EPR spectra of the spin-frustrated and distorted Cu(II) trimers were calculated in the spin-coupling model. The correlations between the hyperfine structures of the EPR spectra and geometry of the Cu(3) clusters (equilateral, isosceles, and scalene triangles) were found. For the EPR spectrum of the spin-frustrated ground state 2(S = 1/2) of an equilateral triangle Cu(3) cluster (J(12) = J(13) = J(23) = J), the calculated hyperfine structure represents the complicated spectrum of the 24 hyperfine lines, of total length 5a, where a is the hyperfine constant of the mononuclear Cu center. For an isosceles Cu(3) cluster (J(12) not equal J(13) = J(23)), the hyperfine splittings of the EPR spectra of the two split S = 1/2 levels with intermediate spins S(12) = 0 and S(12) = 1 are essentially different. The EPR signal of the |(S(12) = 0)S = 1/2> level is characterized by the four equally spaced hyperfine lines (interval A = a) with the same relative spectral amplitudes 16:16:16:16 and total length 3a. For the |(S(12) = 1)S = 1/2> level, the calculated hyperfine structure represents the spectrum of the 16 hyperfine lines with equal spacing (interval A' = a/3), the spectral intensity distribution 1:1:3:3:5:5:7:7:7:7:5:5:3:3:1:1 and total length 5a. These hyperfine spectra differ from the hyperfine structure (10 lines with interval a/3) of the EPR signals of the excited S = 3/2 level of the Cu(3) cluster. The quartet hyperfine structure, characteristic of a single Cu(2+) nucleus, which was observed experimentally for the doublet ground state of the spin-frustrated Cu(3)(II) clusters, corresponds to the hyperfine structure of the EPR signal of the |(S(12) = 0)S = 1/2> level. This hyperfine structure is evidence of the lowering of the Cu(3) cluster symmetry from trigonal to orthorhombic and the small splitting of the spin-frustrated 2(S = 1/2) ground state.  相似文献   

5.
EPR spectra of the excited quartet and doublet molecular states of (tetraphenylporphinato)zinc(II) covalently bounded to 3-(N-nitronyl-notroxide) pyridine stable radical are modeled in terms of the spin-Hamiltonian given by the sum of the contributions from the radical and triplet moieties, and the interaction between them. The later is represented by anisotropic point dipolar and isotropic exchange electron spin-spin interactions. It is shown that the high field (W-band) EPR spectra depend on energy separation between the electronic doublet (D) and quartet (Q) states. This dependence was utilized to estimate the upper limit of the intensity of exchange interaction between the radical and porphyrin moieties.  相似文献   

6.
Photoinduced charge separation and recombination in a carotenoid-porphyrin-fullerene triad C-P-C(60)(1) have been followed by multifrequency time-resolved electron paramagnetic resonance (TREPR) at intermediate magnetic field and microwave frequency (X-band) and high field and frequency (W-band). The electron-transfer process has been characterized in the different phases of two uniaxial liquid crystals (E-7 and ZLI-1167). The triad undergoes photoinduced electron transfer, with the generation of a long-lived charge-separated state, and charge recombination to the triplet state, localized in the carotene moiety, mimicking different aspects of the photosynthetic electron-transfer process. Both the photoinduced spin-correlated radical pair and the spin-polarized recombination triplet are observed starting from the crystalline up to the isotropic phase of the liquid crystals. The W-band TREPR radical pair spectrum has allowed unambiguous assignment of the spin-correlated radical pair spectrum to the charge-separated state C(.+)-P-C(60)(.-). The magnetic interaction parameters have been evaluated by simulation of the spin-polarized radical pair spectrum and the spin-selective recombination rates have been derived from the time dependence of the spectrum. The weak exchange interaction parameter (J = +0.5 +/- 0.2 G) provides a direct measure of the dominant electronic coupling matrix element V between the C(.+)-P-C(60)(.-) radical pair state and the recombination triplet state (3)C-P-C(60). The kinetic parameters have been analyzed in terms of the effect of the liquid crystal medium on the electron-transfer process. Effects of orientation of the molecular triad in the liquid crystal are evidenced by simulations of the carotenoid triplet state EPR spectra at different orientations of the external magnetic field with respect to the director of the mesophase. The order parameter (S = 0.5 +/- 0.05) has been evaluated.  相似文献   

7.
EPR spectra of the excited quartet and doublet molecular states of (tetraphenylporphinato)zinc(II)covalently bounded to 3-(N-nitronyl-notroxide) pyridine stable radical are modeled in terms of the spin-Hamiltonian given by the sum of the contributions from the radical and triplet moieties, and the interaction between them. The later is represented by anisotropic point dipolar and isotropic exchange electron spin–spin interactions. It is shown that the high field (W-band) EPR spectra depend on energy separation between the electronic doublet (D) and quartet (Q) states. This dependence was utilized to estimate the upper limit of the intensity of exchange interaction between the radical and porphyrin moieties.  相似文献   

8.
Two quaterthiophene-[60]fullerene dyads in which C60 is singly (4TsC) or doubly (4TdC) connected to the inner beta-position of the terminal thiophene rings have been synthesized. The electronic properties of these donor-acceptor compounds were analyzed by UV/Vis spectroscopy and cyclic voltammetry, and their photophysical properties in solution and in the solid state by (time-resolved) photoluminescence (PL) and photoinduced absorption (PIA) spectroscopy. Both the flexible and geometrically constrained 4TsC and 4TdC dyads exhibit photoinduced charge transfer from the quaterthiophene to the fullerene in toluene and o-dichlorobenzene (ODCB). In toluene, charge transfer occurs in both dyads by an indirect mechanism, the first step of which is a singlet-energy transfer from the 4T(S1) state to the C60(S1) state. In the more polar ODCB, direct electron transfer from 4T(S1) competes with energy transfer, and both direct and indirect charge transfers are observed. The geometrical fixation of the donor and acceptor chromophores in 4TdC results in rate constants for energy and electron transfer that are more than an order of magnitude larger than those of the flexible 4TsC system. For both dyads, charge recombination is extremely fast, as inferred from picosecond-resolved temporal evolution of the excited state absorption of the 4T.+ radical cation both in toluene and ODCB.  相似文献   

9.
X-band echo-detected electron paramagnetic resonance (ED EPR) spectra of triplet state of fullerene C(70) generated by continuous light illumination were found to correspond below 30K to a non-equilibrium electron spin polarization. Above 30K spectra are characteristic of Boltzmann equilibrium. Spectra were simulated fairly well with zero-field splitting parameters D=153 MHz and E and distributed within the range of 6-42 MHz. The origin of E distribution is attributed to the Jahn-Teller effect, which in glassy matrix is expected to depend on the local surrounding of a fullerene molecule (a so-called E-strain). In the center of ED EPR spectra a narrow hole was observed. With increase of the microwave pulse turning angle this hole transforms into a single narrow absorptive line. Numerical simulations by density matrix formalism confirm that central hole originates from a simultaneous excitation of both allowed electron spin transitions of the triplet (T(0)?T(+) and T(0)?T(-)), because of their degeneracy at this spectral position. Also explanations are given why this hole has not been observed in the previously reported experiments on continuous wave EPR and on ED EPR under laser pulse excitation.  相似文献   

10.
We report the dynamic nuclear polarization of (1)H spins in magic-angle-spinning spectra recorded at 5 T and 84 K via the solid effect using Mn(2+) and Gd(3+) complexes as polarizing agents. We show that the magnitude of the enhancements can be directly related to the effective line width of the central (m(S) = -1/2 → +1/2) EPR transition. Using a Gd(3+) complex with a narrow central transition EPR line width of 29 MHz, we observed a maximum enhancement of ~13, which is comparable to previous results on the narrow-line-width trityl radical.  相似文献   

11.
In this study, EPR investigation of gamma-irradiated calcium succinate monohydrate [CaC(4)H(4)O(4)·H(2)O] single crystal has been carried out at room temperature. The compound crystallizes in monoclinic symmetry with the unit-cell dimensions: a=11.952(2)?, b=9.691(2)?, c=11.606(2)?, β=108.81(1)°. The observed lines in the EPR spectra reveal the formation of C˙H(α)CH(β1)H(β2) radical after irradiating [CaC(4)H(4)O(4)·H(2)O] single crystal. The angular variations of EPR spectra have shown that the radical type has only one site in three perpendicular planes. The principal g and a values and direction cosines of C˙H(α)CH(β1)H(β2) radical have been determined.  相似文献   

12.
It is well known that porphyrin derivatives play a key role in the primary process of photo-synthesis[1], in which porphyrins directly absorb the sunlight or indirectly acquire excitation en-ergy from light-harvesting antenna system to reach their excited state, and then donate electrons to quinone acceptors to yield a series of charge-separated species. In general, only first singlet ex-cited state of porphyrins is involved in energy transfer process[2]. However, highly excited state (S2 stat…  相似文献   

13.
A covalent, fixed-distance donor-bridge-acceptor (D-B-A) molecule was synthesized that upon photoexcitation undergoes ultrafast charge separation to yield a radical ion pair (RP) in which the spin-spin exchange interaction (2J) between the two radicals is sufficiently large to result in preferential RP intersystem crossing to the highest-energy RP eigenstate (T(+1)) at the 350 mT magnetic field characteristic of X-band (9.5 GHz) EPR spectroscopy. This behavior is unprecedented in covalent D-B-A molecules, and is evidenced by the time-resolved EPR (TREPR) spectrum at X-band of (3*)D-B-A derived from RP recombination, which shows all six canonical EPR transitions polarized in emission (e,e,e,e,e,e). In contrast, when the RP is photogenerated in a 3400 mT magnetic field, the TREPR triplet spectrum at W-band (94 GHz) of (3*)D-B-A displays the (a,e,e,a,a,e) polarization pattern characteristic of a weakly coupled RP precursor, similar to that observed in photosynthetic reaction center proteins, and indicates a switch to selective population of the lower-energy T(0) eigenstate.  相似文献   

14.
15.
The complex of Cu(2+) hexafluoroacetylacetonate with two pyrazol-substituted nitronyl nitroxides represents an unusual exchange-coupled three-spin system. The antiferromagnetic exchange coupling, which already atT < 150 K is larger than the thermal energy kT, induces the transition from a total spin state S = (3)/(2) to a state S = (1)/(2) and produces static spin polarization. Anomalous electron paramagnetic resonance (EPR) spectra of an S = (1)/(2) state were detected experimentally and described theoretically. The effective g factor of the three-spin system is smaller than 2, despite the fact that all the individual components have g > 2. The observed signals with g < 2 are highly informative and can be employed for determination of the sign and value of the exchange interaction in three-spin nitroxide-copper-nitroxide clusters.  相似文献   

16.
In the presence of scandium triflate, an efficient photoinduced electron transfer from the triplet excited state of C(60) to p-chloranil occurs to produce C(60) radical cation which has a diagnostic NIR (near-infrared) absorption band at 980 nm, whereas no photoinduced electron transfer occurs from the triplet excited state of C(60) (3C(60)) to p-chloranil in the absence of scandium ion in benzonitrile. The electron-transfer rate obeys pseudo-first-order kinetics and the pseudo-first-order rate constant increases linearly with increasing p-chloranil concentration. The observed second-order rate constant of electron transfer (k(et)) increases linearly with increasing scandium ion concentration. In contrast to the case of the C(60)/p-chloranil/Sc(3+) system, the k(et) value for electron transfer from 3C(60) to p-benzoquinone increases with an increase in Sc(3+) concentration ([Sc(3+)]) to exhibit a first-order dependence on [Sc(3+)], changing to a second-order dependence at the high concentrations. Such a mixture of first-order and second-order dependence on [Sc(3+)] is also observed for a Sc(3+)-promoted electron transfer from CoTPP (TPP(2-) = tetraphenylporphyrin dianion) to p-benzoquinone. This is ascribed to formation of 1:1 and 1:2 complexes between the generated semiquinone radical anion and Sc(3+) at the low and high concentrations of Sc(3+), respectively. The transient absorption spectra of the radical cations of various fullerene derivatives were detected by laser flash photolysis of the fullerene/p-chloranil/Sc(3+) systems. The ESR spectra of the fullerene radical cations were also detected in frozen PhCN at 193 K under photoirradiation of the fullerene/p-chloranil/Sc(3+) systems. The Sc(3+)-promoted electron-transfer rate constants were determined for photoinduced electron transfer from the triplet excited states of C(60), C(70), and their derivatives to p-chloranil and the values are compared with the HOMO (highest occupied molecular orbital) levels of the fullerenes and their derivatives.  相似文献   

17.
The combination of high-field electron paramagnetic resonance (EPR) with site-directed spin labeling (SDSL) techniques employing nitroxide radicals has turned out to be particularly powerful in revealing subtle changes of the polarity and proticity profiles in proteins enbedded in membranes. This information can be obtained by orientation-selective high-field EPR resolving principal components of the nitroxide Zeeman (g) and hyperfine ( A) tensors of the spin labels attached to specific molecular sites. In contrast to the g- and A-tensors, the (14)N ( I = 1) quadrupole interaction tensor of the nitroxide spin label has not been exploited in EPR for probing effects of the microenvironment of functional protein sites. In this work it is shown that the W-band (95 GHz) high-field electron spin echo envelope modulation (ESEEM) method is well suited for determining with high accuracy the (14)N quadrupole tensor principal components of a nitroxide spin label in disordered frozen solution. By W-band ESEEM the quadrupole components of a five-ring pyrroline-type nitroxide radical in glassy ortho-terphenyl and glycerol solutions have been determined. This radical is the headgroup of the MTS spin label widely used in SDSL protein studies. By DFT calulations and W-band ESEEM experiments it is demonstrated that the Q(yy) value is especially sensitive to the proticity and polarity of the nitroxide environment in H-bonding and nonbonding situations. The quadrupole tensor is shown to be rather insensitive to structural variations of the nitroxide label itself. When using Q(yy) as a testing probe of the environment, its ruggedness toward temperature changes represents an important advantage over the g xx and A(zz) parameters which are usually employed for probing matrix effects on the spin labeled molecular site. Thus, beyond measurenments of g xx and A(zz) of spin labeled protein sites in disordered solids, W-band high-field ESEEM studies of (14)N quadrupole interactions open a new avenue to reliably probe subtle environmental effects on the electronic structure. This is a significant step forward on the way to differentiate between effects from matrix polarity and hydrogen-bond formation.  相似文献   

18.
A new and easy method for preparing blue sodalite pigments which involves high-temperature calcination of sodalite samples synthesized with aluminum sulfate and an organic template, is presented. Calcination generated the S(3)(-) and S(2)(-) radicals, and the effects of the Al/Si ratio and the calcination temperature on the nature and amounts of the radicals were examined. The radicals were characterized in detail by continuous wave and pulsed EPR at X- and W-band frequencies (approximately 9 and 95 GHz, respectively) complemented by UV-vis measurements. The high-field electron-paramagnetic resonance (EPR) measurements allowed us to clearly resolve the g anisotropy of S(3)(-) and W-band electron nuclear double resonance (ENDOR) measurements detected strong coupling with extra-framework (23)Na cations and weak coupling with framework (27)Al. On the basis of the spectroscopic results and density functional theory (DFT) calculations of the g-tensors of S(3)(-) and S(2)(-) radicals, the EPR signals were attributed to three different radicals, all with the open structure C(2v), that are located within the sodalite beta cages. While two of these radicals are well isolated, the third one is associated with an exchange-narrowed signal originating from S(3)(-) radicals in nearby sodalite cages.  相似文献   

19.
Fe(3+) ions in hexagonal and cubic fluoroelpasolite crystals (A(1)(2)B(I)M(III)F(6)) have been investigated in a combined Electron Paramagnetic Resonance (EPR) and Electron Nuclear Double Resonance (ENDOR) study. A detailed analysis of the ENDOR spectra for the nearest (19)F and (23)Na shells in X (9.5 GHz) and Q band (34 GHz) allowed the complex EPR spectra to be disentangled and to determine the spin Hamiltonian parameters for the various S = 5/2 Fe(3+) centres. W-band (95 GHz) EPR measurements as a function of temperature were performed to provide unambiguous evidence about the absolute signs of the Zero Field Splitting (ZFS) and SuperHyperFine (SHF) parameters for Fe(3+) in Cs(2)NaAlF(6) as already determined from the ENDOR work. It could be concluded that all principal (19)F hyperfine values were positive, in agreement with earlier assignments in the literature for related systems. A comparative analysis of the (19)F SHF data for Fe(3+) at a perfectly octahedral site in the cubic crystal, and at two slightly trigonally distorted environments in the hexagonal crystals, indicates that the metal-to-ligand distance changes upon doping. The obtained set of parameters concerning one defect in various analogous environments can furthermore be used to test different methods of theoretical calculations for ZFS and SHF values.  相似文献   

20.
A W-band single-crystal EPR study has been performed on a molecular cluster comprising 19 iron(III) ions bridged by oxo- hydroxide ions, Fe(19), in order to investigate magnetic nanosystems with a behavior in between the one of Magnetic NanoParticles (MNP) and that of Single Molecule Magnets (SMM). The Fe(19) has a disk-like shape: a planar Fe(7) core with a brucite (Mg(OH)(2)) structure enclosed in a "shell" of 12 Fe(III) ions. EPR and magnetic measurements revealed an S = 35/2 ground state with an S = 33/2 excited state lying ~ 8 K above. The presence of other low-lying excited states was also envisaged. Rhombic Zero Field Splitting (ZFS) tensors were determined, the easy axes lying in the Fe(19) plane for both the multiplets. At particular temperatures and orientations, a partially resolved fine structure could be observed which could not be distinguished in powder spectra, due to orientation disorder. The similarities of the EPR behavior of Fe(19) and MNP, together with the accuracy of single crystal analysis, helped to shed light on spectral features observed in MNP spectra, that is a sharp line at g = 2 and a low intensity transition at g = 4. Moreover, a theoretical analysis has been used to estimate the contribution to the total magnetic anisotropy of core and surface; this latter is crucial in determining the easy axis-type anisotropy, alike that of MNP surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号