首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
A simple procedure for the quantification of flocculation (k(f)) and coalescence (k(c)) rates from emulsion stability simulations (ESS) of concentrated systems is presented. It is based on a simple analytical equation, which results from the sum of well-known formulas for the separate processes of flocculation and coalescence. The expression contains k(f) and k(c) as fitting parameters and is found to reproduce the behavior predicted by ESS spanning a wide range of volume fractions (1 < phi < 30%) and surfactant concentrations (1.2 x10(-5) < C < 1.2 x 10(-4) M). This procedure allows interpretation of ESS data in terms of the referred kinetic rates. Furthermore, it could also provide an additional mean for the direct comparison of the simulation data with experimental results.  相似文献   

2.
We present multiple dynamic transition pathways on the two-dimensional dihedral plane between conformational states of the alanine dipeptide. The method used in this study is dynamic importance sampling (DIMS). To perform DIMS, unbiased molecular dynamic simulations are used to generate equilibrium ensembles for the alanine dipeptide within different states. Free energy surfaces on the dihedral plane are calculated from the equilibrium simulations, and four energy minima defined from the surface are used as the starting and ending points for DIMS dynamics. The DIMS method represents an important step towards finding multiple transition pathways within complex biomolecular systems.  相似文献   

3.
This study develops an efficient approach for calculating the density of states from energy transition probability matrices generated from extended sampling Monte Carlo simulations. Direct and iterative variants of the method are shown to achieve high accuracy when applied to the two-dimensional Ising model for which the density of states function can be determined exactly. They are also used to calculate the density of states of lattice protein and Lennard-Jones models which generate more complex nonzero matrix structures. Whereas the protein simulations test the method on a system exhibiting a rugged free energy landscape, the Lennard-Jones calculations highlight implementation details that arise in applications to continuous energy systems. Density of states results for these two systems agree with estimates from multiple histogram reweighting, demonstrating that the new method provides an alternative approach for computing the thermodynamic properties of complex systems.  相似文献   

4.
Replica exchange methods (REMs) are increasingly used to improve sampling in molecular dynamics (MD) simulations of biomolecular systems. However, despite having been shown to be very effective on model systems, the application of REM in complex systems such as for the simulation of protein and peptide folding in explicit solvent has not been objectively tested in detail. Here we present a comparison of conventional MD and temperature replica exchange MD (T-REMD) simulations of a beta-heptapeptide in explicit solvent. This system has previously been shown to undergo reversible folding on the time scales accessible to MD simulation and thus allows a direct one-to-one comparison of efficiency. The primary properties compared are the free energy of folding and the relative populations of different conformers as a function of temperature. It is found that to achieve a similar degree of precision T-REMD simulations starting from a random set of initial configurations were approximately an order of magnitude more computationally efficient than a single 800 ns conventional MD simulation for this system at the lowest temperature investigated (275 K). However, whereas it was found that T-REMD simulations are more than four times more efficient than multiple independent MD simulations at one temperature (300 K) the actual increase in conformation sampling was only twofold. The overall gain in efficiency using REMD resulted primarily from the ordering of different conformational states over temperature, as opposed to a large increase of conformational sampling. It is also shown that in this system exchanges are accepted primarily based on (random) fluctuations within the solvent and are not strongly correlated with the instantaneous peptide conformation raising questions in regard to the efficiency of T-REMD in larger systems.  相似文献   

5.
Parallel tempering (PT) molecular dynamics simulations have been extensively investigated as a means of efficient sampling of the configurations of biomolecular systems. Recent work has demonstrated how the short physical trajectories generated in PT simulations of biomolecules can be used to construct the Markov models describing biomolecular dynamics at each simulated temperature. While this approach describes the temperature-dependent kinetics, it does not make optimal use of all available PT data, instead estimating the rates at a given temperature using only data from that temperature. This can be problematic, as some relevant transitions or states may not be sufficiently sampled at the temperature of interest, but might be readily sampled at nearby temperatures. Further, the comparison of temperature-dependent properties can suffer from the false assumption that data collected from different temperatures are uncorrelated. We propose here a strategy in which, by a simple modification of the PT protocol, the harvested trajectories can be reweighted, permitting data from all temperatures to contribute to the estimated kinetic model. The method reduces the statistical uncertainty in the kinetic model relative to the single temperature approach and provides estimates of transition probabilities even for transitions not observed at the temperature of interest. Further, the method allows the kinetics to be estimated at temperatures other than those at which simulations were run. We illustrate this method by applying it to the generation of a Markov model of the conformational dynamics of the solvated terminally blocked alanine peptide.  相似文献   

6.
Accelerated molecular dynamics (aMD) is an enhanced sampling technique that expedites conformational space sampling by reducing the barriers separating various low-energy states of a system. Here, we present the first application of the aMD method on lipid membranes. Altogether, ~1.5 μs simulations were performed on three systems: a pure POPC bilayer, a pure DMPC bilayer, and a mixed POPC:DMPC bilayer. Overall, the aMD simulations are found to produce significant speedup in trans-gauche isomerization and lipid lateral diffusion versus those in conventional MD (cMD) simulations. Further comparison of a 70-ns aMD run and a 300-ns cMD run of the mixed POPC:DMPC bilayer shows that the two simulations yield similar lipid mixing behaviors, with aMD generating a 2-3-fold speedup compared to cMD. Our results demonstrate that the aMD method is an efficient approach for the study of bilayer structural and dynamic properties. On the basis of simulations of the three bilayer systems, we also discuss the impact of aMD parameters on various lipid properties, which can be used as a guideline for future aMD simulations of membrane systems.  相似文献   

7.
We propose a new adaptive sampling approach to determine free energy profiles with molecular dynamics simulations, which is called as "repository based adaptive umbrella sampling" (RBAUS). Its main idea is that a sampling repository is continuously updated based on the latest simulation data, and the accumulated knowledge and sampling history are then employed to determine whether and how to update the biasing umbrella potential for subsequent simulations. In comparison with other adaptive methods, a unique and attractive feature of the RBAUS approach is that the frequency for updating the biasing potential depends on the sampling history and is adaptively determined on the fly, which makes it possible to smoothly bridge nonequilibrium and quasiequilibrium simulations. The RBAUS method is first tested by simulations on two simple systems: a double well model system with a variety of barriers and the dissociation of a NaCl molecule in water. Its efficiency and applicability are further illustrated in ab initio quantum mechanics/molecular mechanics molecular dynamics simulations of a methyl-transfer reaction in aqueous solution.  相似文献   

8.
The path integral molecular dynamics (PIMD) method provides a convenient way to compute the quantum mechanical structural and thermodynamic properties of condensed phase systems at the expense of introducing an additional set of high frequency normal modes on top of the physical vibrations of the system. Efficiently sampling such a wide range of frequencies provides a considerable thermostatting challenge. Here we introduce a simple stochastic path integral Langevin equation (PILE) thermostat which exploits an analytic knowledge of the free path integral normal mode frequencies. We also apply a recently developed colored noise thermostat based on a generalized Langevin equation (GLE), which automatically achieves a similar, frequency-optimized sampling. The sampling efficiencies of these thermostats are compared with that of the more conventional Nosé-Hoover chain (NHC) thermostat for a number of physically relevant properties of the liquid water and hydrogen-in-palladium systems. In nearly every case, the new PILE thermostat is found to perform just as well as the NHC thermostat while allowing for a computationally more efficient implementation. The GLE thermostat also proves to be very robust delivering a near-optimum sampling efficiency in all of the cases considered. We suspect that these simple stochastic thermostats will therefore find useful application in many future PIMD simulations.  相似文献   

9.
Coarse-grained (lattice-) models have a long tradition in aiding efforts to decipher the physical or biological complexity of proteins. Despite the simplicity of these models, however, numerical simulations are often computationally very demanding and the quest for efficient algorithms is as old as the models themselves. Expanding on our previous work [T. Wu?st and D. P. Landau, Phys. Rev. Lett. 102, 178101 (2009)], we present a complete picture of a Monte Carlo method based on Wang-Landau sampling in combination with efficient trial moves (pull, bond-rebridging, and pivot moves) which is particularly suited to the study of models such as the hydrophobic-polar (HP) lattice model of protein folding. With this generic and fully blind Monte Carlo procedure, all currently known putative ground states for the most difficult benchmark HP sequences could be found. For most sequences we could also determine the entire energy density of states and, together with suitably designed structural observables, explore the thermodynamics and intricate folding behavior in the virtually inaccessible low-temperature regime. We analyze the differences between random and protein-like heteropolymers for sequence lengths up to 500 residues. Our approach is powerful both in terms of robustness and speed, yet flexible and simple enough for the study of many related problems in protein folding.  相似文献   

10.
One‐step perturbation is an efficient method to estimate free energy differences in molecular dynamics (MD) simulations, but its accuracy depends critically on the choice of an appropriate, possibly unphysical, reference state that optimizes the sampling of the physical end states. In particular, the perturbation from a polar moiety to a nonpolar one and vice versa in a polar environment such as water poses a challenge which is of importance when estimating free energy differences that involve entropy changes and the hydrophobic effect. In this work, we systematically study the performance of the one‐step perturbation method in the calculation of the free enthalpy difference between a polar water solute and a nonpolar “water” solute molecule solvated in a box of 999 polar water molecules. Both these polar and nonpolar physical reference states fail to predict the free enthalpy difference as obtained by thermodynamic integration, but the result is worse using the nonpolar physical reference state, because both a properly sized cavity and a favorable orientation of the polar solute in a polar environment are rarely, if ever, sampled in a simulation of the nonpolar solute in such an environment. Use of nonphysical soft‐core reference states helps to sample properly sized cavities, and post‐MD simulation rotational and translational sampling of the solute to be perturbed leads to much improved free enthalpy estimates from one‐step perturbation. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
In this work, we present an adaptive algorithm to optimize the phase space sampling for simulations of rare events in complex systems via forward flux sampling (FFS) schemes. In FFS, interfaces are used to partition the phase space along an order parameter lambda connecting the initial and final regions of interest. Since the kinetic "bottleneck" regions along the order parameter are not usually known beforehand, an adaptive procedure is used that first finds these regions by estimating the rate constants associated with reaching subsequent interfaces; thereafter, the FFS simulation is reset to concentrate the sampling on those bottlenecks. The approach can optimize for either the number and position of the interfaces (i.e., optimized lambda phase staging) or the number M of fired trial runs per interface (i.e., the {M(i)} set) to minimize the statistical error in the rate constant estimation per simulation period. For example, the optimization of the lambda staging leads to a net constant flux of partial trajectories between interfaces and hence a constant flux of connected paths throughout the region between the two end states. The method is demonstrated for several test systems, including the folding of a lattice protein. It is shown that the proposed approach leads to an optimized lambda staging and {M(i)} set which increase the computational efficiency of the sampling algorithm.  相似文献   

12.
The exact computation of free energy differences requires adequate sampling of all relevant low energy conformations. Especially in systems with rugged energy surfaces, adequate sampling can only be achieved by biasing the exploration process, thus yielding non-Boltzmann probability distributions. To obtain correct free energy differences from such simulations, it is necessary to account for the effects of the bias in the postproduction analysis. We demonstrate that this can be accomplished quite simply with a slight modification of Bennett's Acceptance Ratio method, referring to this technique as Non-Boltzmann Bennett. We illustrate the method by several examples and show how a creative choice of the biased state(s) used during sampling can also improve the efficiency of free energy simulations.  相似文献   

13.
Free energy perturbation, a method for computing the free energy difference between two states, is often combined with non-Boltzmann biased sampling techniques in order to accelerate the convergence of free energy calculations. Here we present a new extension of the Bennett acceptance ratio (BAR) method by combining it with umbrella sampling (US) along a reaction coordinate in configurational space. In this approach, which we call Bennett acceptance ratio with umbrella sampling (BAR-US), the conditional histogram of energy difference (a mapping of the 3N-dimensional configurational space via a reaction coordinate onto 1D energy difference space) is weighted for marginalization with the associated population density along a reaction coordinate computed by US. This procedure produces marginal histograms of energy difference, from forward and backward simulations, with higher overlap in energy difference space, rendering free energy difference estimations using BAR statistically more reliable. In addition to BAR-US, two histogram analysis methods, termed Bennett overlapping histograms with US (BOH-US) and Bennett-Hummer (linear) least square with US (BHLS-US), are employed as consistency and convergence checks for free energy difference estimation by BAR-US. The proposed methods (BAR-US, BOH-US, and BHLS-US) are applied to a 1-dimensional asymmetric model potential, as has been used previously to test free energy calculations from non-equilibrium processes. We then consider the more stringent test of a 1-dimensional strongly (but linearly) shifted harmonic oscillator, which exhibits no overlap between two states when sampled using unbiased Brownian dynamics. We find that the efficiency of the proposed methods is enhanced over the original Bennett's methods (BAR, BOH, and BHLS) through fast uniform sampling of energy difference space via US in configurational space. We apply the proposed methods to the calculation of the electrostatic contribution to the absolute solvation free energy (excess chemical potential) of water. We then address the controversial issue of ion selectivity in the K(+) ion channel, KcsA. We have calculated the relative binding affinity of K(+) over Na(+) within a binding site of the KcsA channel for which different, though adjacent, K(+) and Na(+) configurations exist, ideally suited to these US-enhanced methods. Our studies demonstrate that the significant improvements in free energy calculations obtained using the proposed methods can have serious consequences for elucidating biological mechanisms and for the interpretation of experimental data.  相似文献   

14.
The conformational samplings are indispensible for obtaining reliable canonical ensembles, which provide statistical averages of physical quantities such as free energies. However, the samplings of vast conformational space of biomacromolecules by conventional molecular dynamics (MD) simulations might be insufficient, due to their inadequate accessible time‐scales for investigating biological functions. Therefore, the development of methodologies for enhancing the conformational sampling of biomacromolecules still remains as a challenging issue in computational biology. To tackle this problem, we newly propose an efficient conformational search method, which is referred as TaBoo SeArch (TBSA) algorithm. In TBSA, an inverse energy histogram is used to select seeds for the conformational resampling so that states with high frequencies are inhibited, while states with low frequencies are efficiently sampled to explore the unvisited conformational space. As a demonstration, TBSA was applied to the folding of a mini‐protein, chignolin, and automatically sampled the native structure (Cα root mean square deviation < 1.0 Å) with nanosecond order computational costs started from a completely extended structure, although a long‐time 1‐µs normal MD simulation failed to sample the native structure. Furthermore, a multiscale free energy landscape method based on the conformational sampling of TBSA were quantitatively evaluated through free energy calculations with both implicit and explicit solvent models, which enable us to find several metastable states on the folding landscape. © 2015 Wiley Periodicals, Inc.  相似文献   

15.
Gillespie's direct method is a stochastic simulation algorithm that may be used to calculate the steady state solution of a chemically reacting system. Recently the all possible states method was introduced as a way of accelerating the convergence of the simulations. We demonstrate that while the all possible states (APS) method does reduce the number of required trajectories, it is actually much slower than the original algorithm for most problems. We introduce the elapsed time method, which reformulates the process of recording the species populations. The resulting algorithm yields the same results as the original method, but is more efficient, particularly for large models. In implementing the elapsed time method, we present robust methods for recording statistics and empirical probability distributions. We demonstrate how to use the histogram distance to estimate the error in steady state solutions.  相似文献   

16.
An enhanced conformational sampling method is proposed: virtual‐system coupled canonical molecular dynamics (VcMD). Although VcMD enhances sampling along a reaction coordinate, this method is free from estimation of a canonical distribution function along the reaction coordinate. This method introduces a virtual system that does not necessarily obey a physical law. To enhance sampling the virtual system couples with a molecular system to be studied. Resultant snapshots produce a canonical ensemble. This method was applied to a system consisting of two short peptides in an explicit solvent. Conventional molecular dynamics simulation, which is ten times longer than VcMD, was performed along with adaptive umbrella sampling. Free‐energy landscapes computed from the three simulations mutually converged well. The VcMD provided quicker association/dissociation motions of peptides than the conventional molecular dynamics did. The VcMD method is applicable to various complicated systems because of its methodological simplicity. © 2018 Wiley Periodicals, Inc.  相似文献   

17.
The authors introduce an algorithm for determining the steady-state probability distribution of an ergodic system arbitrarily far from equilibrium. By enforcing equal sampling of different regions of phase space, as in umbrella sampling simulations of systems at equilibrium, low probability regions are explored to a much greater extent than in physically weighted simulations. The algorithm can be used to accumulate joint statistics for an arbitrary number of order parameters for a system governed by any stochastic dynamics. They demonstrate the efficiency of the algorithm by applying it to a model of a genetic toggle switch which evolves irreversibly according to a continuous time Monte Carlo procedure.  相似文献   

18.
A method is proposed to significantly accelerate the convergence of free-energy calculations. It introduces a bias factor in Monte Carlo simulations or, equivalently, a bias force in molecular dynamics simulations. The bias factor targets the energy gap, i.e., the difference in energy function between two states, and is therefore specifically designed for calculating free-energy differences. The goal is to make the probability density of the energy gap as uniform as possible, thus allowing for its accurate determination. An iterative procedure, based on simulations at higher temperatures, is devised to obtain the bias factor. The same method naturally extends to the calculation of potentials of mean force. The generalized coordinate, for which the potential of mean force is to be calculated, now plays the role of the energy gap. Applications to model systems confirm the expected increase in accuracy of calculated free-energy differences and potentials of mean force.  相似文献   

19.
We validate here the Two-Phase Thermodynamics (2PT) method for calculating the standard molar entropies and heat capacities of common liquids. In 2PT, the thermodynamics of the system is related to the total density of states (DoS), obtained from the Fourier Transform of the velocity autocorrelation function. For liquids this DoS is partitioned into a diffusional component modeled as diffusion of a hard sphere gas plus a solid component for which the DoS(υ) → 0 as υ→ 0 as for a Debye solid. Thermodynamic observables are obtained by integrating the DoS with the appropriate weighting functions. In the 2PT method, two parameters are extracted from the DoS self-consistently to describe diffusional contributions: the fraction of diffusional modes, f, and DoS(0). This allows 2PT to be applied consistently and without re-parameterization to simulations of arbitrary liquids. We find that the absolute entropy of the liquid can be determined accurately from a single short MD trajectory (20 ps) after the system is equilibrated, making it orders of magnitude more efficient than commonly used perturbation and umbrella sampling methods. Here, we present the predicted standard molar entropies for fifteen common solvents evaluated from molecular dynamics simulations using the AMBER, GAFF, OPLS AA/L and Dreiding II forcefields. Overall, we find that all forcefields lead to good agreement with experimental and previous theoretical values for the entropy and very good agreement in the heat capacities. These results validate 2PT as a robust and efficient method for evaluating the thermodynamics of liquid phase systems. Indeed 2PT might provide a practical scheme to improve the intermolecular terms in forcefields by comparing directly to thermodynamic properties.  相似文献   

20.
We develop a numerical scheme that calculates forces under given conformational states of a biomolecule by using a harmonic sampling potential. It can also be used for calculating the potential of mean force, as tested by random walks on Gaussian enthalpy barriers. Further, Brownian dynamics simulations of a finite-length freely jointed chain confirm the analytic expressions for its entropic elasticity that we derive. Our method, while generally applicable to many systems, will be particularly useful for studying the elasticity of biopolymers where various types of ensembles differ due to the finite size effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号