首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Some of the bis‐complexes of a derivative of phenhomazine (dibenzo[b,f][1:5]diazocine‐6:12‐dione; PHZD) with Ni(II), Cu(II), Co(II), Cd(II), Zn(II) and Hg(II) of the general formula M(PHZD)2X2 [where X = C1, Br and I], were prepared and identified. These complexes have been characterised on the basis of elemental analysis, and spectroscopic, magnetic and conductance data. The thermal mode of decomposition and thermal stability of these complexes was investigated on the basis of the respective thermal curves in a static air atmosphere. The thermoanalytical investigations indicate that these complexes undergo two‐step changes as temperature is raised, except for Cd(II) and Hg(II) complexes, with the formation of metal oxides as end product. The degradation mechanism of the complexes has also been proposed.  相似文献   

2.
A new polydentate Schiff base (H3L) was synthesized from the condensation of 2,6-diformyl-4-methylphenol and S-methylhydrazine-carbodithionate. The 1:1 metal complexes were obtained from the interaction of H3L and the metal ions Cr(III), Co(II), Ni(II), Cu(II), Cd(II) and Hg(II). The complexes were characterized by elemental analysis and IR spectroscopy. Detailed studies of the thermal properties of the complexes were investigated by thermogravimetry techniques.  相似文献   

3.
The iodide complexes of transition metals with 1,2-diimidazoloethane (DIE) of the general formula MLI2, (M=Cu(II), Hg(II), Cd(II); L=1,2-diimidazoloethane) were prepared and studied by means of thermogravimetry (TG/DTG) and differential thermal analysis (DTA) techniques. Their compositions were investigated by elemental analysis in order to ensure their purity and structural elucidations were based on conductivity measurements, room temperature magnetic measurements, proton NMR, XRD and IR spectra. Thermal decomposition of these distorted tetrahedral complexes and the ligand took place in two distinct steps upon heating up to 800°C, with the loss of inorganic and organic fragments. The thermal degradation of all the complexes (except for cadmium complex) in static air atmosphere started at temperatures lower than those observed for the free ligand pyrolysis. The composition of intermediates formed during degradation was confirmed by microanalysis and IR spectroscopy. The residues after heating above 740°C corresponded to metal oxide except for Hg(II) complex, which behaved differently. It was found on the basis of thermal analysis that thermal stability of the complexes increased in the following sequence: Hg(II)<Cu(II)<Cd(II).  相似文献   

4.
Owing to the presence of multiple donor atoms such as N(1)H, C(2)SH, N(3), C(4)O, and CNC in the newly synthesized antimetabolite, namely, 5-dimethylaminomethyl-2-thiouracil, preferences of the hetero-atoms for coordination with metal ions like Cu(II), Zn(II), Cd(II), and Hg(II) were explored. The complexes isolated were characterized by chemical analysis and spectroscopic techniques. The ligand behaves as a bidentate/tetradentate chelating ligand. Invariably in all the complexes, one of the donor atoms is the soft C(2)SH. The kinetic and thermodynamic parameters for the thermal decomposition of the metal chelates were evaluated using (Coats–Redfern) and (Madhusudanan–Krishnan–Ninan) equations. The antimicrobial studies show that the copper(II) complexes are more active than the other complexes.  相似文献   

5.
The complexes of alloxan with Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II) Cd(II), Hg(II), Ti(IV) and Zr(II) have been isolated and characterized on the basis of elemental analysis, molar conductivity, spectral studies (mid infrared, 1H-NMR and UV/vis spectra), X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The thermal decomposition of the metal complexes was studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The kinetic thermodynamic parameters, E*, ΔH*, ΔS* and ΔG*, were calculated using Coats and Redfern and Horowitz and Metzger equations. The ligand and its complexes have been studied for possible biological activity including antibacterial and antifungal activity.  相似文献   

6.
Seven novel divalent transitional metal chelate polymers compounds (commonly known as chelate compounds or metal coordination complexes or polymer complexes) have been characterized by thermogravimetry (TG), differential thermal gravimetry (DTG) and differential thermal analysis (DTA) methods. Thermal decomposition behaviour of Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) polymers with terphthaoyl-bis(p-methoxyphenylcarbamide) has been investigated by thermogravimetric analysis (TGA) at heating rate 10 °C min?1 under nitrogen atmosphere. TG/DTA of chelate compounds were shown to be a stable compound against thermal decomposition which was measured on the basis of final decomposing temperature, but it is observed in some curves that decomposition takes place at low temperature due to the lattice water, which is always placed at outer coordination sphere of the central metal ion. The presence of both lattice and coordinated water were noteworthy investigated in Co(II), Ni(II) and Cu(II) chelate polymer compounds, whereas lattice water found in Zn(II), Cd(II) and Hg(II). However, Mn(II) showed only coordinated water. Thermal stabilities for release of lattice water, coordinated water and organic moiety that occur in sequential decomposition of chelate compounds are explained on the basis of ionic size effect and electronegativity. The processes of thermal degradation taking place in seven chelate polymers were studied comparatively by TG/DTG/DTA curves which indicating the difference in the thermal decomposition. Coats–Redfern integral method is used to determine the kinetic parameters for the successive steps in the decomposition sequence of TG curves. Scanning electron microscope images of some chelate polymers were shown in previous publication revealed that particle sizes of chelate polymers were found to be of nanomaterial level therefore, resulting chelate compounds might be called as nanomaterial.  相似文献   

7.
Treatment of U-shaped, binuclear Cu(I) complexes 1,1' (1, counterion: BF(4)(-); 1', counterion: PF(6)(-)) with metal cyanide linear linkers K[Au(CN)(2)] (3) and Hg(CN)(2) (4) lead to formation of new supramolecular assemblies 5,5' and 6,6', respectively, in good yield. These derivatives have been characterized by NMR spectroscopy, IR, and X-ray diffraction studies. Derivative 5,5' are supramolecular metallacycles in which intramolecular aurophilic interactions between the Au(I) metal centers of the linkers are observed. Derivative 5 crystallizes as a single solid phase, whereas derivative 5' is characterized in the solid state as four different pseudo-polymorphs (5'a-d). Notably in the case of phase 5'd, a dimer of supramolecular metallacycles bounded by intermolecular aurophilic interactions is formed. Conversely, derivatives 6,6' present large structural diversity depending on the nature of the counterion. Derivative 6 is a supramolecular rectangle in which the Hg(II)-Hg(II) metal distance suggests mercurophilic interaction, whereas 6' crystallizes as two different pseudo-polymorphs 6'a,b, that is, a one-dimensional coordination polymer and one oligomer with no short Hg(II)-Hg(II) metal contacts, respectively. In derivatives 6,6', short contacts between the Hg(II) metal centers and fluorine atoms of the counterions are also observed, which may explain the counterion structural dependence of these supramolecular assemblies based on Hg(II) metal cyanide linker. Comparison of the different solid-state structures characterized highlights the importance of weak secondary interactions between the linkers for the formation supramolecular metallacycles from molecular clips 1,1' and suggests the range of energies required for these interactions to form metallacycles and to induce self-aggregation.  相似文献   

8.
New Pb(II), Mn(II), Hg(II), and Zn(II) complexes, derived from 4-(4-chlorophenyl)-1-(2-(phenylamino)acetyl)thiosemicarbazone, were synthesized. The compounds with general formulas, [Pb(H2L)2(OAc)2]ETOH.H2O, [Mn(H2L)(HL)]Cl, [Hg2(H2L)(OH)SO4], and [Zn(H2L)(HL)]Cl, were characterized by physicochemical and theoretical studies. X-ray diffraction studies showed a decrease in the crystalline size of compounds that were exposed to gamma irradiation (γ-irradiation). Thermal studies of the synthesized complexes showed thermal stability of the Mn(II) and Pb(II) complexes after γ-irradiation compared to those before γ–irradiation, while no changes in the Zn(II) and Hg(II) complexes were observed. The optimized geometric structures of the ligand and metal complexes are discussed regarding density functional theory calculations (DFT). The antimicrobial activities of the ligand and metal complexes against several bacterial and fungal stains were screened before and after irradiation. The Hg(II) complex has shown excellent antibacterial activity before and after γ-irradiation. In vitro cytotoxicity screening of the ligand and the Mn(II) and Zn(II) complexes before and after γ-irradiation disclosed that both the ligand and Mn(II) complex exhibited higher activity against human liver (Hep-G2) than Zn(II). Molecular docking was performed on the active site of MK-2 and showed good results.  相似文献   

9.
A phosphorus-containing Schiff base was prepared from bis{3-[2-(4-amino-1,5-dimethyl-2-phenylpyrazol-3-ylideneamino)ethyl]indol-1-ylmethyl}phosphinic acid and paraformaldehyde as a novel antibacterial compound. The reaction of the Schiff base ligand with VO(IV), Ni(II), Co(II), Cu(II), Zn(II), Cd(II), Hg(II), Pd(II) and Pt(IV) led to binuclear species of metal complexes, depending on the ratio of metal ion and ligand. The ligand and its complexes were investigated using elemental analysis, Fourier transform infrared, 1H NMR, 13C NMR, UV–visible and mass spectra, thermogravimetric analysis, conductivity measurements and thermal analysis. The results showed that the Schiff base behaves as a tetradentate ligand; moreover, on the basis of conductance results, of all the prepared complexes are non-electrolytes, excepting the Pt(IV) complex. The metal complexes were found to be formed with a metal-to-ligand ratio of 2:1, except for the Pt(IV) complex with a ratio of 1:1. The activation thermodynamic parameters (ΔE*, ΔH*, ΔS*, ΔG* and K) and the activation energy of thermal decomposition were determined from thermogravimetric analysis using the Coats–Redfern method. The biological activities of the metal complexes were screened against the growth of bacteria and fungi in vitro to assess the antimicrobial potential and study the toxicity of the compounds. The prepared compounds have noteworthy antimicrobial properties.  相似文献   

10.
The metal ions Co(II), Ni(II), Zn(II), Zr(IV), and Hg(II) reacted with synthesized Schiff base (L) in mole ratios 1:2 (M:L) formed metal complexes. The structure of the prepared compounds was identified based on the data obtained from elemental analyses, magnetic measurement, melting point, conductivity, Fourier-transform infrared, UV–Vis., nuclear magnetic resonance spectroscopy, X-ray diffraction (XRD) spectra, and thermal analysis (TG/DTG [thermogravimetric/differential thermal analysis]). The results indicate that the L bound as bidentate through the oxygen atom of the hydroxyl group and nitrogen atom of the azomethine group with the metal ions and the complexes is electrolyte in nature. TG/DTG studies confirmed the chemical formula for complexes. The kinetic and thermodynamic parameters such as E*, ΔH*, ΔS*, and ΔG* were determined by using Coats–Redfern and Horowitz–Metzger methods at n = 1 and n ≠ 1. The XRD patterns exhibited a semicrystalline nature lying between the amorphous and crystalline nature for L, (D), and (E), but the complexes (A), (B), and (C) possessed a crystalline character. Density functional theory confirmed the structural geometry of the complexes. In vitro antimicrobial activities were performed for L and its metal complexes.  相似文献   

11.
Six solid Pd(II) and Hg(II) complexes of some purines and pyrimidines have been prepared and characterized by elemental analyses, IR, UV–Vis spectra, magnetic measurements, and thermal analyses. The data suggest tetrahedral and square planar geometries for mercury and palladium complexes, respectively. The thermal behavior of the complexes has been studied applying TG, DTA, and DSC techniques, and the thermodynamic parameters and mechanisms of the decompositions were evaluated. The ?S* values of the decomposition steps of the metal complexes indicated that the activated fragments have more ordered structure than the undecomposed complexes, and/or the decomposition reactions are slow. The thermal processes proceeded in complicated mechanisms where the bond between the central metal ion and the ligands dissociates after losing small molecules such as H2O, HCl or C=O. The palladium adenine complex is ended with the metal as a final product. However, the thermal reactions of the other five palladium and mercury pyrimidines complexes are ended with metal bonded to O, N, or S of the pyrimidine ring.  相似文献   

12.
The complexes of Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II), dioxouranium(VI), and Th (IV) with a new Schiff base, 3-[(Z)-5-amino-1,3,3-trimethyl cyclohexylmethylimino]-1,3-dihydroindol-2-one formed by the condensation of isatin (Indole-2.3-dione) with isophoronediamine(5-amino-1,3,3-trimethyl-cyclohexane methylamine) (IPDA) was synthesized and characterized by microanalysis, conductivity, UV-visi-ble, FT-IR, 1 H NMR,TGA, and magnetic susceptibility measurements. All the complexes exhibit 1: 1 metal to ligand ratio except for the dioxouranium(VI) and thorium(IV) complexes, where the metal: ligand stoichiometry is 1: 2. The spectral data revealed that the ligand acts as monobasic bidentate, coordinating to the metal ion through the azomethine nitrogen and carbonyl oxygen of the isatin moiety. Tetrahedral geometry for Co(II), Ni(II), Zn(II), Cd(II), and Hg(II) complexes, square planar geometry for Cu(II) complexes, and the coordination numbers 6 and 8 for UO2(VI) and Th(IV) complexes, respectively, are proposed. Both the ligand and the metal complexes were screened for their antibacterial activity against Bacillus subtilis, Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Pseudomonas aeruginosa, and the complexes are more potent bactericides than the ligand. The anthelmentic activity of the ligand and its complexes against earthworms was also investigated. This article was submitted by the authors in English.  相似文献   

13.
The reactions of symmetric and nonsymmetric alkyl-substituted 2,2′-dipyrrolylmethenes with Cu(II), Ni(II), Co(II), Zn(II), Cd(II), and Hg(II) acetates in dimethylformamide solutions at 298.15 K were studied. The formation of hetero- and homoligand complexes was observed in the systems studied depending on the concentration conditions and the nature of the complexing metal. The stepped and complete constants of formation for metal complexes were determined. The key trends of the influence of the metal and ligand nature on the stabilization of the complexes were established.  相似文献   

14.
The dissociation constants of carminic acid (7-D-glucopyronosyl-3,5,6,8-tetra- hydroxy-1-methyl-9,10-dioxo-anthracene-2-carboxylic acid) (CA), together with the stability constants of its Cu(II), Zn(II), Ni(II), Co(II) and Hg(II) complexes, were studied potentiometrically in aqueous medium at 25.0?(1)?°C, and at the ionic background of 0.1?mol?dm?3 of NaCl, and determined with the SUPERQUAD computer program. It has been observed that carminic acid has five dissociation constants, and for H5L their values are 3.39?(7), 5.78?(7), 8.35?(7), 10.27?(7), and 11.51?(7). This ligand behaves as a bi-dentate ligand, and the carboxyl and the ortho hydroxy groups of the ligand coordinate to the metal ions. Various metal complexes were produced in solution under the experimental conditions, for each metal ion used, including hydrolyzed species. The species distribution curves of the complexes formed in the solution were calculated and reviewed. The stability of the complexes was found to follow the order: Cu(II) > Zn(II) > Ni(II) > Co(II) > Hg(II).  相似文献   

15.
The synthesis and characterization of Co(II), Ni(II), Cu(II), Zn(II), Ag(I), Cd(II) and Hg(II) complexes of isatin-3-oxime (H2OXI) are reported. Elemental analysis, infrared spectroscopy, thermal analysis and X-ray powder diffraction were used to characterize the complexes. The IR spectral data show that the ligand behaves in a monodentate or a bidentate manner in the different complexes. The compositions of the prepared complexes were Ag(HOXI), Hg(OXI) and M(HOXI)2 for M=Co(II), Ni(II), Cu(II), Zn(II) and Cd(II).This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

16.
Some metal complexes of DL–methionine were prepared in aqueous medium and characterized by different physico-chemical methods. Methionine forms 1:2 complexes with metal, M(II). The general empirical formula of the complexes is proposed as [(C5H10NO2S)2MII]; where MII = Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II). All the complexes are extremely stable in light and air and optically inactive. Magnetic susceptibility data of the complexes demonstrate that they are high spin paramagnetic complex except Zn(II), Cd(II) and Hg(II) complexes. The bonding pattern in the complexes are similar to each other as indicated by electronic absorption spectra and FTIR spectral analysis. The current potential data, peak separation (AE) and the peak current ratio (ipa/ipc) of the (Mn, Cu and Cd) complexes indicate that the charge transfer processes are irreversible, the systems are diffusion controlled and also adsorptive controlled. The charge transfer rate constant of metals in their complexes are less than those in their metal salts at identical experimental conditions due to the coordination of metal with methionine.  相似文献   

17.
The geometries and energetics of complexes of Hg(II) and Pb(II) with sulfur‐ and aminopyridine‐containing chelating resin including crosslinked polystyrene immobilizing 2‐aminopyridine via sulfur‐containing (PVBS‐AP), sulfoxide‐containing (PVBSO‐AP), and sulfone‐containing (PVBSO2‐AP) spacer arms have been investigated theoretically, and thus interactions of the metal ions with chelating resins were evaluated. The results indicate that PVBS‐AP behaves as a tridentate ligand to coordinate with the metal ions by S and two N atoms to form chelating compounds with S atom playing a dominant role in the coordination, whereas PVBSO‐AP and PVBSO2‐AP interact with metal cations, respectively, in a tricoordinate manner by O and two N atoms forming chelating complexes. Furthermore, it is revealed that O and N2 atoms of PVBSO‐AP are the main contributor of coordination to Hg(II), whereas N2 atom of PVBSO2‐AP is mainly responsible for the coordination to Hg(II). For PVBSO‐AP‐Pb2+ and PVBSO2‐AP‐Pb2+ complex, the coordination is dominated by the synergetic effect of N1, N2, and O atoms. Natural bond orbital and second‐order perturbation analyses suggest that the charge transfer from the chelating resins to metal ions is mainly dominated by the interactions of lone pair of electrons of the donor atoms with the unoccupied orbitals of metal ions. Hg(II) complexes exhibit larger binding energies than the corresponding Pb(II) complexes, implying the chelating resins exhibit higher affinity toward Hg(II), which is consistent with the experimental results. Combined the theoretical and experimental results, further understanding of the structural information of the complexes and the coordination mechanism was achieved. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

18.
Complexes of Ni(II), Co(II), Cu(II), Zn(II), Cd(II), Hg(II) and U(VI)O2 with 2-acetylpyridine-[N-(3-hydroxy-2-naphthoyl)] hydrazone (H2APHNH) have been prepared and characterized by elemental analysis, molar conductance, thermal (TG, DTG), spectral (1H NMR, IR, UV–Vis, ESR) and magnetic measurements. 1H NMR spectrum of the ligand suggests the presence of intramolecular hydrogen bonding. IR spectra show that H2APHNH is a bidentate, tridentate and/or tetradentate ligand. Thermal decomposition of some complexes ended with metal oxide as a final product. ESR spectra gave evidence for the proposed structure and the bonding for some Cu(II) complexes. Biological activity measurements were carried out.  相似文献   

19.
N-substituted imidazole phenanthroline dendritic metal complexes of 2-(4-(4,5-diphenyl-2,5-1H-imidazol-2-yl)phenyl)-1H-imidazo[4,5-f][1,10]-phenanthroline, N-phenyl substituted phenylene imidazole derivative (TIPIP) and N,N-dimethyl phenylene imidazole derivative (MIPIP), were synthesized and characterized. DC electrical conductivity behavior vs. temperature in the range 300–500 K of the prepared three-branched metal (II) complexes of Co, Ni, Cu, Zn, Cd, and Hg was studied. Of the entire dendritic metal complexes, Cu(II) complexes showed the best electrical conductivity in the range 10?7–10?12 Scm?1; a semiconductor behavior. For comparison, the linear Cu(II) complexes of TIPIP and MIPIP were synthesized and their electrical conductivity behavior was studied. Linear and dendritic Cu(II) complexes showed consistent DC electrical conductivity behavior. N,N-dimethyl substituted phenylene imidazole (MIPIP) Cu(II) dendritic and linear complexes showed the highest electrical conductivity values which reached 10?7 Scm?1 at high temperatures. The synthesized materials were characterized using CHN analyses, FTIR, UV-visible, 1H-NMR, and thermal analyses (TGA, DTA).  相似文献   

20.
A new series of transition metal complexes of Cu(II), Ni(II), Co(II), Mn(II), Zn(II), VO(IV), Hg(II) and Cd(II) have been synthesized from the Schiff base (L) derived from 4-aminoantipyrine, 3-hydroxy-4-nitrobenzaldehyde and o-phenylenediamine. Structural features were obtained from their elemental analyses, magnetic susceptibility, molar conductance, mass, IR, UV-Vis, 1H NMR and ESR spectral studies. The data show that these complexes have composition of ML type. The UV-Vis, magnetic susceptibility and ESR spectral data of the complexes suggest a square-planar geometry around the central metal ion except VO(IV) complex which has square-pyramidal geometry. The redox behaviour of copper and vanadyl complexes was studied by cyclic voltammetry. Antimicrobial screening tests gave good results in the presence of metal ion in the ligand system. The nuclease activity of the above metal complexes shows that Cu, Ni and Co complexes cleave DNA through redox chemistry whereas other complexes are not effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号