首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis of the ABA triblock copolymer nanoparticles of poly(N,N‐dimethylacrylamide)‐block‐polystyrene‐block‐poly(N,N‐dimethylacrylamide) (PDMA‐b‐PS‐b‐PDMA) by seeded RAFT polymerization is performed, and the effect of the introduced third poly(N,N‐dimethylacrylamide) (PDMA) block on the size and morphology of the PDMA‐b‐PS‐b‐PDMA triblock copolymer nanoparticles is investigated. This seeded RAFT polymerization affords the in situ synthesis of the PDMA‐b‐PS‐b‐PDMA core‐corona nanoparticles, in which the middle solvophobic PS block forms the compacted core, and the first solvophilic PDMA block and the introduced third PDMA block form the solvated complex corona. During the seeded RAFT polymerization, the introduced third PDMA block extends, and the molecular weight of the PDMA‐b‐PS‐b‐PDMA triblock copolymer linearly increases with the monomer conversion. It is found that, the size of the PS core in the PDMA‐b‐PS‐b‐PDMA triblock copolymer core‐corona nanoparticles is almost equal to that in the precursor of the poly(N,N‐dimethylacrylamide)‐block‐polystyrene diblock copolymer core‐corona nanoparticles and it keeps constant during the seeded RAFT polymerization, and whereas the introduction of the third PDMA block leads to a crowded complex corona on the PS core. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1777–1784  相似文献   

2.
Doubly thermoresponsive ABC brush‐linear‐linear triblock copolymer nanoparticles of poly[poly(ethylene glycol) methyl ether vinylphenyl]‐block‐poly(N‐isopropylacrylamide)‐block‐polystyrene [P(mPEGV)‐b‐PNIPAM‐b‐PS] containing two thermoresponsive blocks of poly[poly(ethylene glycol) methyl ether vinylphenyl] [P(mPEGV)] and poly(N‐isopropylacrylamide) (PNIPAM) are prepared by macro‐RAFT agent mediated dispersion polymerization. The P(mPEGV)‐b‐PNIPAM‐b‐PS nanoparticles exhibit two separate lower critical solution temperatures or phase‐transition temperatures (PTTs) corresponding to the linear PNIPAM block and the brush P(mPEGV) block in water. Upon temperature increasing above the first and then the second PTT, the hydrodynamic diameter (Dh) of the triblock copolymer nanoparticles undergoes an initial shrinkage at the first PTT and the subsequent shrinkage at the second PTT. The effect of the chain length of the PNIPAM block on the thermoresponsive behavior of the triblock copolymer nanoparticles is investigated. It is found that, the longer chains of the thermoresponsive PNIPAM block, the greater contribution on the transmittance change of the aqueous dispersion of the triblock copolymer nanoparticles. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2266–2278  相似文献   

3.
The micellar macro‐RAFT agent‐mediated dispersion polymerization of styrene in the methanol/water mixture is performed and synthesis of temperature‐sensitive ABC triblock copolymer nanoparticles is investigated. The thermoresponsive diblock copolymer of poly(N,N‐dimethylacrylamide)‐block‐poly[N‐(4‐vinylbenzyl)‐N,N‐diethylamine] trithiocarbonate forms micelles in the polymerization solvent at the polymerization temperature and, therefore, the dispersion RAFT polymerization undergoes as similarly as seeded dispersion polymerization with accelerated polymerization rate. With the progress of the RAFT polymerization, the molecular weight of the synthesized triblock copolymer of poly(N,N‐dimethylacrylamide)‐block‐poly[N‐(4‐vinylbenzyl)‐N,N‐diethylamine]‐b‐polystyrene linearly increases with the monomer conversion, and the PDI values of the triblock copolymers are below 1.2. The dispersion RAFT polymerization affords the in situ synthesis of the triblock copolymer nanoparticles, and the mean diameter of the triblock copolymer nanoparticles increases with the polymerization degree of the polystyrene block. The triblock copolymer nanoparticles contain a central thermoresponsive poly [N‐(4‐vinylbenzyl)‐N,N‐diethylamine] block, and the soluble‐to‐insoluble ‐‐transition temperature is dependent on the methanol content in the methanol/water mixture. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2155–2165  相似文献   

4.
A new A-B-A type of block copolymers,polyacrylonitrile-block-polydimethylsiloxane-block-polyacrylonitrile(PAN-b-PDMSb-PAN),which comprises two polymer blocks of different polarities and compatibilities,were synthesized for the first time via reversible addition-fragmentation chain transfer polymerization.Reaction kinetics was investigated.PAN-b-PDMS-b-PAN films were prepared by spin-coating on glass chips.Significant order on the film surface morphologies was observed.  相似文献   

5.
《中国化学快报》2023,34(3):107344
Stimulus-responsive vesicles have broad applications in a variety of areas. Herein, oxidation-responsive framboidal triblock copolymer vesicles are prepared by photoinitiated RAFT seeded emulsion polymerization of a thioether-functionalized monomer using diblock copolymer vesicles as seeds. The obtained framboidal vesicles can transform into worms or spheres in the presence of reactive oxygen species, which can be further used for controlled release of cargos (e.g., silica nanoparticles).  相似文献   

6.
A reversible addition-fragmentation chain transfer (RAFT) agent, the methyl-2-(n-butyltrithiocarbonyl)propanoate (MBTTCP) has shown to be efficient in controlling the polymerization of N,N-dimethylacrylamide (DMA), N-isopropylacrylamide (NIPAM) and N-acryloyloxysuccinimide (NAS). Two different strategies have been studied to synthesize block copolymers based on one PNIPAN block and the other a random copolymer of DMA and NAS. When a PNIPAM trithiocarbonate-terminated is used as macromolecular chain transfer agent for the polymerization of a mixture of NAS and DMA, well-defined P(NIPAM-b-(NAS-co-DMA)) block copolymers were obtained with a low polydispersity index. These thermoresponsive block copolymers dissolved in aqueous solution at 25 °C and self-assembled into micelles when the temperature was raised above the LCST of the PNIPAM block. The micelle shell containing NAS units was further crosslinked using a primary diamine in order to get shell-crosslinked nanoparticles. Upon cooling below the LCST of PNIPAM this structure may easily reorganize to form nanoparticles with a water filled hydrophilic core.  相似文献   

7.
Poly(i-butyl methacrylate)-polystyrene block copolymer was successfully prepared in an aqueous medium by two-step atom transfer radical polymerization (ATRP), mini-emulsion- and seeded-ATRP, in which ethyl 2-bromoisobutyrate/CuBr/4,4-dinonyl-2,2-dipyridyl initiator system was used. The block copolymer had narrow molecular weight distribution (Mw/Mn=1.1) and the number-average molecular weight measured by gel permeation chromatography agreed with the calculated value.Part CCXLVIII of the series Studies on Suspension and Emulsion  相似文献   

8.
《Mendeleev Communications》2020,30(6):731-733
  1. Download : Download high-res image (94KB)
  2. Download : Download full-size image
  相似文献   

9.
Controlled synthesis of amphiphilic block copolymer nanoparticles in a convenient way is an important and interest topic in polymer science. In this review, three formulations of polymerization-induced self-assembly to in situ synthesize block copolymer nanoparticles are briefly introduced, which perform by reversible addition-fragmentation chain transfer(RAFT) polymerization under heterogeneous conditions, e.g., aqueous emulsion RAFT polymerization, dispersion RAFT polymerization and especially the recently proposed seeded RAFT polymerization. The latest developments in several selected areas on the synthesis of block copolymer nano-assemblies are highlighted.  相似文献   

10.
The nonionic amphiphilic brush polymers such as poly[poly(ethylene oxide) methyl ether vinylphenyl‐co‐styrene] trithiocarbonate [P(mPEGV‐co‐St)‐TTC] and poly[poly(ethylene oxide) methyl ether vinylphenyl‐b‐styrene‐b‐poly(ethylene oxide) methyl ether vinylphenyl] trithiocarbonate [P(mPEGV‐b‐St‐b‐mPEGV)‐TTC] with different monomer sequence and chemical composition are synthesized and their application as macro‐RAFT agent in the emulsion RAFT polymerization of styrene is explored. It is found that the monomer sequence in the brush polymers exerts great influence on the emulsion RAFT polymerization kinetics, and the fast polymerization with short induction period in the presence of P(mPEGV‐co‐St)‐TTC is demonstrated. Besides, the chemical composition in the brush polymer macro‐RAFT agent effect on the emulsion RAFT polymerization is investigated, and the macro‐RAFT agent with high percent of the hydrophobic PS segment leads to fast and well controlled polymerization. The growth of triblock copolymer colloids in the emulsion polymerization is checked, and it reveals that the colloidal morphology is ascribed to the hydrophobic PS block extension, and the P(mPEGV‐co‐St) block almost have no influence just on the size of the colloids. This may be the first example to study the monomer sequence and the chemical composition in the macro‐RAFT agent on emulsion RAFT polymerization, and will be useful to reveal the block copolymer particle growth. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

11.
Four families of hyperbranched amphiphilic block copolymers of styrene (Sty, less polar monomer) and 2‐vinylpyridine (2VPy, one of the two more polar monomers) or 4‐vinylpyridine (4VPy, the other polar monomer) were prepared via self‐condensing vinyl reversible addition‐fragmentation chain transfer polymerization (SCVP‐RAFT). Two families contained 4VPy as the more polar monomer, one of which possessing a Sty‐b‐4VPy architecture, and the other possessing the reverse block architecture. The other two families bore 2VPy as the more polar monomer and had either a 2VPy‐b‐Sty or a Sty‐b‐2VPy architecture. Characterization of the hyperbranched block copolymers in terms of their molecular weights and compositions indicated better control when the VPy monomers were polymerized first. Control over the molecular weights of the hyperbranched copolymers was also confirmed with the aminolysis of the dithioester moiety at the branching points to produce linear polymers with number‐average molecular weights slightly greater than the theoretically expected ones, due to recombination of the resulting thiol‐terminated linear polymers. The amphiphilicity of the hyperbranched copolymers led to their self‐assembly in selective solvents, which was probed using atomic force microscopy and dynamic light scattering, which indicated the formation of large spherical micelles of uniform diameter. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1310–1319  相似文献   

12.
A new kind of thermo-responsive hydrogel, poly(methacryloyl-DL-alanie methyl ester), was synthesized by means of radiation polymerization. The swelling and deswelling were reversible. The deswelling kinetics changes with the variation of temperature. It was found that a rigid membrane was formed during deswelling at 40°C. In the case of deswelling at 20°C, no skin was found. The hydrogel deswelled uniformly.  相似文献   

13.
Well-defined poly(dimethylsiloxane)-b-poly(2,2,3,3,4,4,4-heptafluorobutyl methacrylate-b-poly(styrene) (PDMS-b-PHFBMA-b-PS) triblock copolymers were prepared by two-step reversible addition-fragmentation chain transfer (RAFT) polymerization. The two-step RAFT polymerization proceeded in a controlled manner as demonstrated by the macromolecular characteristics of the blocks and corresponding polymerization kinetic data. Furthermore, surface properties and morphologies of the polymers were investigated with static water contact angle (WCA) measurement, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and atomic force microscopy (AFM) which showed low surface energy and microphase-separation surfaces.  相似文献   

14.
Polymerization‐induced self‐assembly of block copolymer through dispersion RAFT polymerization has been demonstrated to be a valid method to prepare block copolymer nano‐objects. However, volatile solvents are generally involved in this preparation. Herein, the in situ synthesis of block copolymer nano‐objects of poly(ethylene glycol)‐block‐polystyrene (PEG‐b‐PS) in the ionic liquid of 1‐butyl‐3‐methylimidazolium hexafluorophosphate ([BMIN][PF6]) through the macro‐RAFT agent mediated dispersion polymerization is investigated. It is found that the dispersion RAFT polymerization of styrene in the ionic liquid of [BMIN][PF6] runs faster than that in the alcoholic solvent, and the dispersion RAFT polymerization in the ionic liquid affords good control over the molecular weight and the molecular weight distribution of the PEG‐b‐PS diblock copolymer. The morphology of the in situ synthesized PEG‐b‐PS diblock copolymer nano‐objects, e.g., nanospheres and vesicles, in the ionic liquid is dependent on the polymerization degree of the solvophobic block and the concentration of the fed monomer, which is somewhat similar to those in alcoholic solvent. It is anticipated that the dispersion RAFT polymerization in ionic liquid broads a new way to prepare block copolymer nano‐objects. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1517–1525  相似文献   

15.
Reversible addition fragmentation chain transfer (RAFT) polymerization of cholesteryl acrylate (ChA) was conducted using S-1-dodecyl-S′-(α,α′-dimethyl-α′′-acetic acid)trithiocarbonate as CTA and AIBN as initiator in toluene at 80 °C. The polymerization was investigated at two different CTA concentrations (0.025 and 0.040 M). Polymerization of ChA with CTA concentration of 0.040 M proceeds in a controlled/living manner as evidenced by linear increase of the molecular weight with conversion and narrow polymer polydispersity (PDI < 1.2). With lower initial CTA concentration, namely 0.025 M, although poly(cholesteryl acrylate) (PChA) exhibiting narrow molecular weight distributions could be synthesized, the polymerization showed relatively low control with many termination products. Chain extension polymerizations were performed starting from either the PChA or the polystyrene (PS) block, and well-defined copolymers based on ChA and styrene were prepared. Thermal properties of PChA and PS-b-PChA copolymer were investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), and the results showed that both PChA and PS-b-PChA are amorphous polymers. PChA begins to decompose at ca. 218 °C with maximum weight loss rate at 351 °C, while PS-b-PChA shows double weight loss rate peaks located at 345 and 415 °C, respectively.  相似文献   

16.
This paper presents the solution homopolymerization, random and block copolymerization of acrylic monomers, mediated using an S‐(1,4‐phenylenebis(propane‐2,2‐diyl)) bis(N,N‐butoxycarbonylmethyldithiocarbamate) RAFT agent. Fair to good control was obtained over the solution homopolymerization of various acrylic monomers. Although inhibition periods were observed, nearly no retardation was found to occur. Satisfactory control was also obtained over the solution copolymerization of n‐butyl acrylate with methacrylic acid, mediated using this RAFT agent. Finally, triblock copolymer synthesis, starting from the macromolecular intermediates produced in the homo‐ and copolymerization experiments, was studied, and was shown to be successful. The observed relatively broad molar mass distributions could be explained by a partial decomposition of the dithiocarbamate‐based RAFT agent during synthesis and/or polymerization, for which strong indications were obtained by performing a careful MALDI‐ToF MS analysis. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6419–6434, 2006  相似文献   

17.
A series of poly [2-(dimethylamino)ethyl methacrylate (DMA)-sodium acrylate (SA)] diblock copolymers were synthesized using reversible addition-fragmentation chain transfer (RAFT) polymerization. The polymerization exhibits controlled characters: well-controlled molecular weight, narrow molecular weight distribution, molecular weight increasing with polymerization time. The zwitterionic diblock copolymers show rich solution behaviors. Dynamic light scattering (DLS) indicated the formation of micelles and reverse micelles of copolymers is affected by net charge density of copolymers. Microcalorimetry studies showed that the lower critical solution temperature (LCST) increases with incorporation of hydrophilic segments in buffer.  相似文献   

18.
S‐allyl‐4‐methyldithiobenzoate was synthesized and used as a chain transfer agent for the RAFT polymerization of butyl acrylate to produce a functionalized acrylic rubber. A solution of 8 wt% of this functionalized rubber was prepared in styrene and polymerized to generate a material called acrylic rubber‐modified polystyrene (AMP) constituted by well‐dispersed particles of poly(butyl acrylate)‐block‐poly(styrene) into a polystyrene matrix. Impact strength of injection‐molded samples of AMP was measured and compared with the general purpose polystyrene (GPPS) and the high impact polystyrene (HIPS). AMP itself showed an impact strength value similar to GPPS; however, when AMP was blended with conventional HIPS, the resulting material exhibited an improvement of 76–91% as compared to HIPS by itself, without affecting negatively tensile properties. Transmission electron microscopy analysis revealed both kinds of dispersed phases, i.e. the typical salami particles of polybutadiene coming from HIPS (size: 0.5–2 µ) and small particles from poly(butyl acrylate)‐block‐poly(styrene) (size: ~50 nm). We clearly showed that such a bimodality of the particle size distribution caused the positive synergistic effect on impact strength. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
可逆加成-断裂链转移聚合(RAFT Polymerization)是目前最为常用的活性可控自由基聚合方法之一,因其产物分子量分布较窄、适用单体范围广、反应条件温和等优势得到了不同领域科学家的广泛应用。然而,科学家们在选择RAFT链转移剂(也称RAFT试剂)时,经常会忽略RAFT链转移剂与单体活性的匹配原则,导致在制备高活单体与低活单体的嵌段共聚物方面存在产物分子量分布宽、聚合速率慢,甚至反应无法成功进行的问题。基于此,本文首先综述聚合中RAFT链转移剂的选用原则,随后介绍近几年开发的一类同时适用于高/低活性单体聚合的通用型RAFT链转移剂(Universal/Switchable RAFT agent)的作用原理及适用条件,并着重探讨了基于通用型RAFT链转移剂制备高/低活性单体的嵌段共聚物的最新进展及应用。  相似文献   

20.
《Mendeleev Communications》2022,32(2):238-240
Continuous and semicontinuous RAFT copolymerization was first applied to synthesize well-defined copolymers of styrene and acrylic acid. The obtained copolymers have a different monomer sequence distribution due to different ways of adding acrylic acid to the reaction medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号