首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
New methods for the preparation of reversible pH-responsive DNA hydrogels based on Hoogsteen triplex structures are described. One system consists of a hydrogel composed of duplex DNA units that bridge acrylamide chains at pH = 7.4 and undergoes dissolution at pH = 5.0 through the reconfiguration of one of the duplex bridging units into a protonated CG·C+ triplex structure. The second system consists of a hydrogel consisting of acrylamide chains crosslinked in the presence of an auxiliary strand by Hoogsteen TA·T triplex interaction at pH = 7.0. The hydrogel transforms into a liquid phase at pH = 10.0 due to the separation of the triplex bridging units. The two hydrogel systems undergo reversible and cyclic hydrogel/solution transitions by subjecting the systems to appropriate pH values. The anti-cancer drug, coralyne, binds specifically to the TA·T triplex-crosslinked hydrogel thereby increasing its stiffness. The pH-controlled release of the coralyne from the hydrogel is demonstrated.  相似文献   

2.
Three-dimensional (3D) DNA crystals have been envisioned as programmable biomaterial scaffolds for creating ordered arrays of biological and nonbiological molecules. Despite having excellent programmable properties, the linearity of the Watson-Crick B-form duplex imposes limitations on 3D crystal design. Predictable noncanonical base pairing motifs have the potential to serve as junctions to connect linear DNA segments into complex 3D lattices. Here, we designed crystals based on a template structure with parallel-stranded noncanonical base pairs. Depending on pH, the structures we determined contained all but one or two of the designed secondary structure interactions. Surprisingly, a conformational change of the designed Watson-Crick duplex region resulted in crystal packing differences between the predicted and observed structures. However, the designed noncanonical motif was virtually identical to the template when crystals were grown at pH 5.5, highlighting the motif's predictability. At pH 7.0 we observed a structurally similar variation on this motif that contains a previously unobserved C-G?G-C quadruple base pair. We demonstrate that these two variants can interconvert in crystallo in response to pH perturbations. This study spotlights several important considerations in DNA crystal design, describes the first 3D DNA lattice composed of A-DNA helical sheets, and reveals a noncanonical DNA motif that has adaptive features that may be useful for designing dynamic crystals or biomaterial assemblies.  相似文献   

3.
以无机粘土为交联剂制备了具有温度、pH双重敏感特性的羧甲基纤维素钠/聚(N-异丙基丙烯酰胺)/粘土半互穿网络纳米复合水凝胶(CMC/PNIPA/Clay semi-IPN),并通过红外和透射电镜对其结构和形态进行了表征。在酸性(pH=1.2)和20℃条件下,分别研究了温度和不同pH缓冲液对该凝胶溶胀度的影响,测定了复合水凝胶的力学性能。结果表明:水凝胶中的粘土被剥离成单片层,且均匀分散在凝胶网络中,起交联剂的作用,而CMC以线性大分子的形态存在;CMC/PNIPA/Clay具有良好的温度、pH双重敏感特性;凝胶的断裂伸长率>1 000%。  相似文献   

4.
DNA‐based shape‐memory hydrogels revealing switchable shape recovery in the presence of two orthogonal triggers are described. In one system, a shaped DNA/acrylamide hydrogel is stabilized by duplex nucleic acids and pH‐responsive cytosine‐rich, i‐motif, bridges. Separation of the i‐motif bridges at pH 7.4 transforms the hydrogel into a quasi‐liquid, shapeless state, that includes the duplex bridges as permanent shape‐memory elements. Subjecting the quasi‐liquid state to pH 5.0 or Ag+ ions recovers the hydrogel shape, due to the stabilization of the hydrogel by i‐motif or C‐Ag+‐C bridged i‐motif. The cysteamine‐induced transformation of the duplex/C‐Ag+‐C bridged i‐motif hydrogel into a quasi‐liquid shapeless state results in the recovery of the shaped hydrogel in the presence of H+ or Ag+ ions as triggers. In a second system, a shaped DNA/acrylamide hydrogel is generated by DNA duplexes and bridging Pb2+ or Sr2+ ions‐stabilized G‐quadruplex subunits. Subjecting the shaped hydrogel to the DOTA or KP ligands eliminates the Pb2+ or Sr2+ ions from the respective hydrogels, leading to shapeless, memory‐containing, quasi‐liquid states that restore the original shapes with Pb2+ or Sr2+ ions.  相似文献   

5.
DNA oligonucleotides can be used in order to assemble highly structured materials. Oligonucleotides with sticky ends can form long linear structures, whereas branching is required to form two- and three-dimensional nanostructures. In this paper, we show that when Ni(2+) is attached to the N7 atom of guanine, it can also act as a branching point. Thus, we have found that the heptanucleotide d(GAATTCG) can assemble into long linear duplex structures, which cross in space to generate a cubic structure. The three-dimensional arrays are stabilized by phosphate-Ni(2+)-guanine interactions. For the first time, the crystallization of a B form DNA oligonucleotide in a cubic system is reported, space group I23. Large solvent cavities are found among the DNA duplexes.  相似文献   

6.
The conformation of an unusual slipped loop DNA structure exhibited by the sequence d(GAATTCCCGAATTC)2 is determined using a combination of geometrical and molecular mechanics methods. This sequence is known to form a B-DNA-like duplex with the central non-complementary cytosines extruded into single stranded loop regions. The unusual feature is that the interior guanine does not pair with the cytosine across, instead, it pairs with the cytosine upstream by skipping two cytosines, leading to a slipped loop DNA structure with the loops staggered by two base pairs. The two loops, despite being very small, can fold across minor or major groove symmetrically or asymmetrically disposed, with one of the loop bases partially blocking the major or minor groove. Most interestingly, for certain conformations, the loop bases approach one another at close proximity so as to engage even in base pairing as well as base stacking interactions across the major groove. While such pairing and stacking are common in the tertiary folds of RNA, this is the first time that such an interaction is visualized in a DNA. This observation demonstrates that a W-C pair can readily be accomplished in a typical slipped loop structure postulated for DNA. Such tertiary loop interaction may prevent access to regulatory proteins across the major groove of the duplex DNA, thus providing a structure-function relation for the occurrence of slipped loop structure in DNA. Contribution no. 839 from this department  相似文献   

7.
DNA分子中的碱基对可以长程传递电荷, DNA分子中的碱基π堆积结构为电荷的长程传递提供了良好的通道. 电荷在DNA分子中的传递受碱基序列的影响, 利用这种性质可以构建DNA碱基错配检测的电化学传感器. 寡聚酰胺能和DNA以小沟绑定方式高亲和力地结合, 并且具有序列识别功能, 本文以带有硝基官能团的寡聚酰胺分子为电化学探针, 设计了电化学DNA生物传感器. 结果显示, 寡聚酰胺与DNA修饰电极作用后, 电化学响应显著增强, 并且可以作为检测DNA碱基错配的电化学探针分子.  相似文献   

8.
The structure of a new form of duplex DNA, the antiparallel Hoogsteen duplex, is studied in polyd(AT) sequences by means of state-of-the-art molecular dynamics simulations in aqueous solution. The structure, which was found to be stable in all of the simulations, has many similarities with the standard Watson-Crick duplex in terms of general structure, flexibility, and molecular recognition patterns. Accurate MM-PB/SA (and MM-GB/SA) analysis shows that the new structure has an effective energy similar to that of the B-type duplex, while it is slightly disfavored by intramolecular entropic considerations. Overall, MD simulations strongly suggest that the antiparallel Hoogsteen duplex is an accessible structure for a polyd(AT) sequence, which might compete under proper experimental conditions with normal B-DNA. MD simulations also suggest that chimeras containing Watson-Crick duplex and Hoogsteen antiparallel helices might coexist in a common structure, but with the differential characteristics of both type of structures preserved.  相似文献   

9.
10.
Molecular beacons (MBs) are fluorescent nucleic acid probes with a hairpin-shaped structure in which the 5' and 3' ends are self-complementary. Due to a change in their emissive properties upon recognition with complementary sequences, MBs allow the diagnosis of single-stranded DNA or RNA with high mismatch discrimination, in vitro and in vivo. Whereas the stems of MB hairpins usually rely on the formation of a Watson-Crick duplex, we demonstrate in this report that the preceding structure can be replaced by a G-quadruplex motif (G4). Intramolecular quadruplexes may still be formed with a central loop composed of 12 to 21 bases, therefore extending the sequence repertoire of quadruplex formation. G4-MB can efficiently be used for oligonucleotide discrimination: in the presence of a complementary sequence, the central loop hybridizes and forms a duplex that causes opening of the quadruplex stem. The corresponding G4-MB unfolding can be detected by a change in its fluorescence emission. We discuss the thermodynamic and kinetic opportunities that are provided by using G4-MB instead of traditional MB. In particular, the intrinsic feature of the quadruplex motif facilitates the design of functional molecular beacons by independently varying the concentration of monovalent or divalent cations in the medium.  相似文献   

11.
Pyrrole–imidazole (PI) polyamides bind to the minor groove of the DNA duplex in a sequence‐specific manner and thus have the potential to regulate gene expression. To date, various types of PI polyamides have been designed as sequence‐specific DNA binding ligands. One of these, cysteine cyclic PI polyamides containing two β‐alanine molecules, were designed to recognize a 7 bp DNA sequence with high binding affinity. In this study, an efficient cyclization reaction between a cysteine and a chloroacetyl residue was used for dimerization in the synthesis of a unit that recognizes symmetrical DNA sequences. To evaluate specific DNA binding properties, dimeric PI polyamide binding was measured by using a surface plasmon resonance (SPR) method. Extending this molecular design, we synthesized a large dimeric PI polyamide that can recognize a 14 bp region in duplex DNA.  相似文献   

12.
DNA triplex and quadruplex structures have been successfully detected by electrospray ionization mass spectrometry (ESI-MS). Circular dichroism and UV-melting experiments show that these structures are stable in 150 mM ammonium acetate at pH 7 for the quadruplexes and pH 5.5 for the triplexes. The studied quadruplexes were the tetramer [d(TGGGGT)](4), the dimer [d(GGGGTTTTGGGG)](2), and the intramolecular folded strand dGGG(TTAGGG)(3), which is an analog of the human telomeric sequence. The absence of sodium contamination allowed demonstration of the specific inclusion of n - 1 ammonium cations in the quadruplex structures, where n is the number of consecutive G-tetrads. We also detected the complexes between the quadruplexes and the quadruplex-specific drug mesoporphyrin IX. MS/MS spectra of [d(TGGGGT)](4) and the complex with the drug are also reported. As the drug does not displace the ammonium cations, one can conclude that the drug binds at the exterior of the tetrads, and not between them. For the triplex structure the ESI-MS spectra show the detection of the specific triplex, at m/z values typically higher than those typically observed for duplex species. Upon MS/MS the antigene strand, which is bound into the major groove of the duplex, separates from the triplex. This is the same dissociation pathway as in solution. To our knowledge this is the first report of a triplex DNA structure by electrospray mass spectrometry.  相似文献   

13.
DNA origami is a widely used method for fabrication of custom‐shaped nanostructures. However, to utilize such structures, one needs to controllably position them on nanoscale. Here we demonstrate how different types of 3D scaffolded multilayer origamis can be accurately anchored to lithographically fabricated nanoelectrodes on a silicon dioxide substrate by DEP. Straight brick‐like origami structures, constructed both in square (SQL) and honeycomb lattices, as well as curved “C”‐shaped and angular “L”‐shaped origamis were trapped with nanoscale precision and single‐structure accuracy. We show that the positioning and immobilization of all these structures can be realized with or without thiol‐linkers. In general, structural deformations of the origami during the DEP trapping are highly dependent on the shape and the construction of the structure. The SQL brick turned out to be the most robust structure under the high DEP forces, and accordingly, its single‐structure trapping yield was also highest. In addition, the electrical conductivity of single immobilized plain brick‐like structures was characterized. The electrical measurements revealed that the conductivity is negligible (insulating behavior). However, we observed that the trapping process of the SQL brick equipped with thiol‐linkers tended to induce an etched “nanocanyon” in the silicon dioxide substrate. The nanocanyon was formed exactly between the electrodes, that is, at the location of the DEP‐trapped origami. The results show that the demonstrated DEP‐trapping technique can be readily exploited in assembling and arranging complex multilayered origami geometries. In addition, DNA origamis could be utilized in DEP‐assisted deformation of the substrates onto which they are attached.  相似文献   

14.
The B-form of DNA can populate two different backbone conformations: BI and BII, defined by the difference between the torsion angles ε and ζ (BI = ε-ζ < 0 and BII = ε-ζ > 0). BI is the most populated state, but the population of the BII state, which is sequence dependent, is significant and accumulating evidence shows that BII affects the overall structure of DNA, and thus influences protein-DNA recognition. This work presents a reparametrization of the CHARMM27 additive nucleic acid force field to increase the sampling of the BII form in MD simulations of DNA. In addition, minor modifications of sugar puckering were introduced to facilitate sampling of the A form of DNA under the appropriate environmental conditions. Parameter optimization was guided by quantum mechanical data on model compounds, followed by calculations on several DNA duplexes in the condensed phase. The selected optimized parameters were then validated against a number of DNA duplexes, with the most extensive tests performed on the EcoRI dodecamer, including comparative calculations using the Amber Parm99bsc0 force field. The new CHARMM model better reproduces experimentally observed sampling of the BII conformation, including sampling as a function of sequence. In addition, the model reproduces the A form of the 1ZF1 duplex in 75 % ethanol, and yields a stable Z-DNA conformation of duplex (GTACGTAC) in its crystal environment. The resulting model, in combination with a recent reoptimization of the CHARMM27 force field for RNA, will be referred to as CHARMM36.  相似文献   

15.
The water-soluble zwitterionic polythiophene, poly(3-((S)-5-amino-5-carboxyl-3-oxapentyl)-2,5-thiophene) hydrochloride (POWT), is a conjugated polyelectrolyte (CPE) with properties well suited for biochip applications. CPEs readily form hydrogels when exposed to water-based buffer solutions or biomolecule solutions. In this work, we used in situ quartz crystal microbalance with dissipation (QCM-D) monitoring to collect information on the interaction between POWT films exposed to buffers with different pH and POWT/DNA chains. Our data show that POWT swells significantly when exposed to low-pH buffers, such as pH 4 acetate, this is seen as an increase in thickness and decrease in viscosity obtained via a Voight-based modeling of combined f and D QCM-D measurements. The magnitude of thickness and viscosity change upon changing from a pH 10 carbonate buffer to pH 4 acetate is 100% increase in thickness and 50% decrease in viscosity. The response of the hydrogel under pH change is well correlated with fluorescence data from POWT films on glass. The state of the hydrogel is important during interaction with biomolecules; illustrated by the observation that a swollen CPE hydrogel adsorbs a higher amount of DNA than a compacted one. In agreement with previous results, the QCM-D data confirmed that the POWT/DNA hydrogel sense complementary DNA specifically and with negligible binding of noncomplementary DNA. These results are important for efficient constructions of biochips in water environments using this class of materials.  相似文献   

16.
The DNA cleavage properties of metallobleomycins conjugated to three solid supports were investigated using plasmid DNA, relaxed covalently closed circular DNA, and linear duplex DNA as substrates. Cleavage of pBR322 and pSP64 plasmid DNAs by Fe(II).BLM A(5)-CPG-C(2) was observed with efficiencies not dissimilar to that obtained using free Fe(II).BLM A(5). Similar results were observed following Fe(II).BLM A(5)-CPG-C(2)-mediated cleavage of a relaxed plasmid, a substrate that lacks ends or negative supercoiling capable of facilitating strand separation. BLMs covalently tethered to solid supports, including Fe(II).BLM A(5)-Sepharose 4B, Fe(II).BLM A(5)-CPG-C(6), and Fe(II).BLM A(5)-CPG-C(2), cleaved a 5'-(32)P end labeled linear DNA duplex with a sequence selectivity identical to that of free Fe(II).BLM A(5); cleavage predominated at 5'-G(82)T(83)-3' and 5'-G(84)T(85)-3'. To verify that these results could also be obtained using other metallobleomycins, supercoiled plasmid DNA and a linear DNA duplex were employed as substrates for Co(III).BLM A(5)-CPG-C(2). Free green Co(III).BLM A(5) was only about 2-fold more efficient than green Co(III).BLM A(5)-CPG-C(2) in effecting DNA cleavage. A similar result was obtained using Cu(II).BLM A(5)-CPG-C(2) + dithiothreitol. In addition, the conjugated Co.BLM A(5) and Cu.BLM A(5) cleaved the linear duplex DNA with a sequence selectivity identical to that of the respective free metalloBLMs. Interestingly, when supercoiled plasmid DNA was used as a substrate, conjugated Fe.BLM A(5) and Co.BLM A(5) were both found to produce Form III DNA in addition to Form II DNA. The formation of Form III DNA by conjugated Fe.BLM A(5) was assessed quantitatively. When corrected for differences in the intrinsic efficiencies of DNA cleavage by conjugated vs free BLMs, conjugated Fe.BLM A(5) was found to produce Form III DNA to about the same extent as the respective free Fe.BLM A(5), arguing that this conjugated BLM can also effect double-strand cleavage of DNA. Although previous evidence supporting DNA intercalation by some metallobleomycins is convincing, the present evidence indicates that threading intercalation is not a requirement for DNA cleavage by Fe(II).BLM A(5), Co(III).BLM A(5), or Cu(I).BLM A(5).  相似文献   

17.
A convenient and label-free scanometric approach for DNA assay was designed by integrating a metal-ion-mediated conformational molecular beacon (MB) and silver-signal amplification regulated by gold-nanoparticle (AuNP) aggregation. The strategy was based on displacing the interaction between the target DNA sequence and a competitor Hg(2+) ion with a link DNA sequence. In the absence of the target DNA sequence, a link DNA sequence interacted with the Hg(2+) ions, thus forming an inactive cyclic conformation of the MB. This result led to the poor aggregation of polyadenosine-functionalized AuNPs (A-AuNP). In the presence of a target DNA sequence with a stronger affinity than that of the competitor, hybridization between the link DNA and target DNA sequences turned on the trigger. The polythymidine end of the resulting linear duplex structure could react with A-AuNP, thus leading to a cross-linking aggregation. This aggregation weakened AuNP-catalyzed silver enhancement on a spot substrate. Further, by using scanometric detection, the concentration of the target DNA sequence could be conveniently read out within a linear range from 1.0 to 30 nM. Interestingly, in the same amount of Hg(2+) ions, one-base mismatched DNA showed only 22% of the relative gray-scale intensity for the target DNA sequence at the same concentration, thus indicating good specificity. The designed approach, with the help of the ion-mediated conformational MB, was simple, cost effective, adaptable, and convenient and provided significant potential applications in clinical analysis.  相似文献   

18.
Heteromorphic hybrid duplex DNA complexes are duplex states, other than perfectly matched duplexes, that can form when single strands comprising several different perfectly matched duplexes are simultaneously present in solution. Such cross-hybridization "side reactions" are of particular nuisance in multiplex reaction schemes, where many strands are designed to hybridize in parallel fashion with only their corresponding perfect complement strand. Relative to the perfect match duplexes, the sequence dependent features of these heteromorphic duplex states and their thermodynamic stability are an important consideration for multiplex hybridization reaction design. We have measured absorbance versus temperature melting curves and performed differential scanning calorimetry measurements on various mixtures of eight different 24 base single strands. When perfect complementary pairs of strands are mixed in single reactions, four perfectly matched duplexes form. When mixtures of strands that are not perfectly matched are prepared and analyzed, melting transitions for cross-hybridization are observed along with significant hyperchromicity changes. This is indicative of a melting hybrid, heteromorphic duplex states formed from two nonperfectly matched strands. In addition, when both the perfectly matched and noncomplementary strands are mixed together (in multiplex hybridization reactions) at molar ratios of 1:1, 3:1, and 1:3, evidence of perfect duplex and heteromorphic duplex complexes is found in all cases. A new analytical tool for considering heterogeneous, duplex complexes in multiplex hybridization mixtures is presented and employed to interpret the acquired melting data.  相似文献   

19.
Spectroscopic and calorimetric techniques were employed to characterize and contrast the binding of the aminoglycoside paromomycin to three octamer nucleic acid duplexes of identical sequence but different strand composition (a DNA.RNA hybrid duplex and the corresponding DNA.DNA and RNA.RNA duplexes). In addition, the impact of paromomycin binding on both RNase H- and RNase A-mediated cleavage of the RNA strand in the DNA.RNA duplex was also determined. Our results reveal the following significant features: (i) Paromomycin binding enhances the thermal stabilities of the RNA.RNA and DNA.RNA duplexes to similar extents, with this thermal enhancement being substantially greater in magnitude than that of the DNA.DNA duplex. (ii) Paromomycin binding to the DNA.RNA hybrid duplex induces CD changes consistent with a shift from an A-like to a more canonical A-conformation. (iii) Paromomycin binding to all three octamer duplexes is linked to the uptake of a similar number of protons, with the magnitude of this number being dependent on pH. (iv) The affinity of paromomycin for the three host duplexes follows the hierarchy, RNA.RNA > DNA.RNA > DNA.DNA. (v) The observed affinity of paromomycin for the RNA.RNA and DNA.RNA duplexes decreases with increasing pH. (vi) The binding of paromomycin to the DNA.RNA hybrid duplex inhibits both RNase H- and RNase A-mediated cleavage of the RNA strand. We discuss the implications of our combined results with regard to the specific targeting of DNA.RNA hybrid duplex domains and potential antiretroviral applications.  相似文献   

20.
Interaction of salmon sperm DNA (300-500 bp) and ultrahigh molecular mass DNA (166 kbp) from bacteriophage T4dC with linear poly(N-diallyl-N-dimethylammonium chloride) (PDADMAC) and slightly cross-linked (#) PDADMAC (#PDADMAC) hydrogel in water has been studied by means of UV-spectroscopy, ultracentrifugation, atomic force, and fluorescence microscopy (FM). It is found that the linear polycation induced compaction of either native (double-stranded) or denatured (single-stranded) DNA by forming PDADMAC-DNA interpolyelectrolyte complexes (IPEC)s. At the same time, #PDADMAC hydrogel is able to distinguish between native and denatured DNA. Native DNA is adsorbed and captured in the hydrogel surface layer, while denatured DNA diffuses to the hydrogel interior until the whole hydrogel sample is transformed into the cross-linked IPEC. Both native and denatured DNA can be completely released from the hydrogel in appropriate conditions with no degradation by adding a low molecular salt. The data observed using conventional physicochemical methods with respect to DNA of a moderate molecular mass remarkably correlate with the pictures directly observed for ultrahigh molecular mass DNA in dynamics by using FM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号