首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interpenetrating polymer network hydrogels composed of poly(ethylene glycol) macromer (PEGM) and chitosan were synthesised by UV irradiation of solutions in a mild aqueous media. The IPN hydrogels exhibited the equilibrium water content (EWC) in the range of 86-94%. The hydrogels were characterised using FT-IR, FT-Raman spectroscopy and differential scanning calorimetry (DSC). The results from DSC measurements indicate that the melting endotherms of PEGM, within the hydrogels, decreased in intensities and shifted to lower temperatures comparing with a linear PEGM. This was due to the decrease of the crystallinity in the IPN hydrogels with higher contents of PEGM. The electrical response of the IPN hydrogels was also investigated by applying electrical current to the hydrogels immersed in a NaCl solution. The extent of a bending degree of the IPN hydrogel depends on the IPN hydrogel composition and applied electric field strength.  相似文献   

2.
Rong  Yan  Zhang  Zhen  He  Chaoliang  Chen  Xuesi 《中国科学:化学(英文版)》2020,63(8):1100-1111
Cell-material and cell-cell interactions represent two crucial aspects of the regulation of cell behavior. In the present study, poly(L-glutamic acid)(PLG) hydrogels were prepared by catalyst-free click crosslinking via a strain-promoted azide-alkyne cycloaddition(SPAAC) reaction between azido-grafted PLG(PLG-N_3) and azadibenzocyclooctyne-grafted PLG(PLG-ADIBO).The bioactive peptides c(RGDfK) and N-cadherin mimetic peptide(N-Cad) were both conjugated to the PLG hydrogel(denoted PLG+RGD/N-Cad) in order to regulate cell-material and cell-cell interactions. Gelation time and storage modulus of the hydrogels were tunable through variations in the concentration of polypeptide precursors. The hydrogels degraded gradually in the presence of proteinases. The viability of bone marrow mesenchymal stem cells(BMSCs) was maintained when cultured with extracts of the hydrogels or encapsulated within the hydrogels. Degradation was observed within 10 weeks following the subcutaneous injection of hydrogel solution in rats, displaying excellent histocompatibility in vivo. The introduction of RGD into the PLG hydrogel promoted the adhesion of BMSCs onto the hydrogels. Moreover, when encapsulated within the PLG+RGD/NCad hydrogel, BMSCs secreted cartilage-specific matrix, in addition to chondrogenic gene and protein expression being significantly enhanced in comparison with BMSCs encapsulated in hydrogels without N-Cad modification. These findings suggest that these biodegradable, bioactive polypeptide hydrogels have great potential for use in 3D cell culture and in cartilage tissue engineering.  相似文献   

3.
Halloysite nanotubes (HNTs) were added to cellulose NaOH/urea solution to prepare composite hydrogels using epichlorhydrine crosslinking at an elevated temperature. The shear viscosity, mechanical properties, microstructure, swelling properties, cytocompatibility, and drug delivery behavior of the cellulose/HNT composite hydrogels were investigated. The viscosity of the composite solution increases with the addition of HNT. The compressive mechanical properties of composite hydrogels are significantly improved compared with pure cellulose hydrogel. The compressive strength of the composite hydrogels with 66.7% HNTs is 128 kPa, while that of pure cellulose hydrogel is only 29.8 kPa in compressive strength. Rheological measurement suggests the resistance to deformation is improved for composite hydrogels. X-ray diffraction and Fourier transform infrared spectroscopy show that the crystal structure and chemical structure of HNT are not changed in the composite hydrogels. Hydrogen bonding interactions between HNT and cellulose exist in the composites. A porous structure of the composite hydrogels with pore size of 200–400 μm was found by scanning electron microscopy. The addition of HNT leads to decreased swelling ratios in NaCl solution and pure water for the composite hydrogels. Cytotoxicity assays show that the cellulose/HNT composite hydrogels have a good biocompatibility with MC3T3-E1 cells and MCF-7 cells. Curcumin is further loaded into the composite hydrogel via physical adsorption. The curcumin-loaded composite hydrogels show a strong inhibition effect on the cancer cells. All the results illustrate that the cellulose/HNT composite hydrogels have promising applications such as anticancer drug delivery systems and anti-inflammatory wound dressings.  相似文献   

4.
A facile synthetic strategy was developed for the preparation of thermoresponsive nanocomposite hydrogels comprising crosslinked chitosan (CS) networks and poly(N‐isopropylacrylamide) [p(NIPAAm)] nanogels. First, thermoresponsive p(NIPAAm) nanogels were synthesized via emulsion polymerization. The p(NIPAAm) nanogels were introduced into methacrylamide CS (MC) solution and the free‐radical initiated crosslinking reaction of MC produced nanogel‐embedded hydrogels. The last step involves the loading of the antibacterial model drug levofloxacin (LFX) into the prepared nanocomposite hydrogels by allowing the preformed hydrogels to swell to equilibrium in the drug's aqueous solution. The integration of p(NIPAAm) nanogel into CS networks facilitates thermoresponsive release of LFX with an enhancement of the drug‐loading capacity within the hydrogel. Notably, thermoresponsive drug‐release was achieved without unwarranted modification of the hydrogel's dimension and shape, although an increase in temperature caused the collapse of the p(NIPAAm) nanogels. The thermoresponsive property of the investigated nanocomposite hydrogel is beneficial and may offer broad opportunities for drug temperature‐triggered release for clinical applications. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1907–1914  相似文献   

5.
Adsorption and controlled release of Chlortetracycline HCl to and from multifunctional polymeric materials (HEMA/MAA) hydrogels were investigated. P(HEMA/MAA) hydrogels were synthesized by gamma radiation-induced copolymerization of 2-hydroxyethylmethacrylate (HEMA) and methacrylic acid (MAA) in aqueous solution. The influence of copolymer composition and pH value of the surrounding medium on the type of water diffusion into the glassy polymer were discussed. Drug, Chlortetracycline HCl containing hydrogels, with different drug concentration to polymer ratios, was loaded by direct adsorption method. The influence of MAA content in the gel on the adsorption capacities of hydrogel was studied. Chlortetracycline HCl adsorption capacity of hydrogels was found to increase from 8 to 138 mg Chlortetracycline HCl per gram dry gel with increasing amount of MAA in the gel system and drug concentration. The effect of pH on the releasing behavior of Chlortetracycline HCl from gel matrix was investigated. In vitro drug release studies in different buffer solutions show that the basic parameters affecting the drug release behavior of hydrogel are the pH of the solution and MAA content of hydrogel.  相似文献   

6.
辐射交联制备改性CMC水凝胶的溶胀行为研究   总被引:10,自引:0,他引:10  
利用丙烯酰胺 (AAm)接枝改性纤维素 ,然后进行羧甲基化反应得到高取代度的丙烯酰胺 羧甲基纤维素钠 (AAm CMC Na) .对该材料进行γ射线辐照制备出新型改性CMC水凝胶 .研究了这种水凝胶的溶胀动力学、交联动力学以及温度、pH值和无机盐浓度对水凝胶溶胀行为的影响 ,并与CMC Na水凝胶进行了比较 .结果表明 ,该水凝胶和CMC Na水凝胶相比 ,优点在于辐照交联所用的剂量下降 ,而且所需的CMC浓度减少 .AAm CMC Na水凝胶的溶胀度随温度升高而增大 ,在pH为 6~ 8范围内达到最大值 ,并随无机盐浓度与吸收剂量增加而下降 ,表现出较好的温度敏感性和pH敏感性 ,可望作为吸水材料和水保持剂  相似文献   

7.
A novel poly(N‐isopropylacrylamide) (PNIPA)/PNIPA interpenetrating polymer network (IPN) was synthesized and characterized. In comparison with conventional PNIPA hydrogels, the shrinking rate of the IPN hydrogel increased when gels, swollen at 20 °C, were immersed in 50 °C water. The phase‐transition temperature of the IPN gel remained unchangeable because of the same chemical constituent in the PNIPA gel. The reswelling kinetics were slower than those of the PNIPA hydrogel because of the higher crosslinking density of the IPN hydrogel. The IPN hydrogel had better mechanical strength because of its higher crosslinking density and polymer volume fraction. The release behavior of 5‐fluorouracil (5‐Fu) from the IPN hydrogel showed that, at a lower temperature, the release of 5‐Fu was controlled by the diffusion of water molecules in the gel network. At a higher temperature, 5‐Fu inside the gel could not diffuse into the medium after a burst release caused by the release of the drug on the surface of the gel. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1249–1254, 2004  相似文献   

8.
Hydrogels, with self-healing properties that can self-repair spontaneously when subjected to mechanical stress, are gaining popularity in the biomedical field. Numerous attempts have been made to create distinctive hydrogels with self-healing properties, along with stimuli-responsiveness and biocompatibility. Several techniques exist for fabricating hydrogels, including physical and chemical crosslinking via the creation of covalent bonds, and so on. Here, we prepared self-healing, stimuli-responsive, mineralized hydrogel by simply dissolving Kollidon 90-F, sodium chloride (NaCl), and potassium carbonate (K2CO3) in an aqueous solution. The dissociated CO32− replaces the water molecules from the Kollidon 90-F polymer backbone and facilitates the cross-linking of the polymer chain, resulting in hydrogel formation. In addition, the in-situ produced sodium carbonate (Na2CO3) strengthens the hydrogel network. We optimized the mineralized hydrogels by taking various metal salts and different concentrations of K2CO3. The optimized hydrogel showed good stability over a period of time, was able to maintain viscoelastic properties, possessed good self-healing ability, and showed a shape retention ability. The shear-thinning property demonstrated by the optimized hydrogel could open a ray of hope in the bioprinting or 3D printing industry. Further, the stretch-responsive release of dye from the Self-healing mineralized hydrogel (SHMH) matrix confirms the mechanoresponsive behavior of the hydrogel. Overall, the findings could be utilized in the future to fabricate a stable drug delivery system that can autonomously release the drug molecules when stretched by daily processes such as joint movements.  相似文献   

9.
In recent years, there has been an increased interest in injectable, in situ crosslinking hydrogels due to their minimally invasive application and ability to conform to their environment. Current in situ crosslinking chitosan hydrogels are either mechanically robust with poor biocompatibility and limited biodegradation due to toxic crosslinking agents or the hydrogels are mechanically weak and undergo biodegradation too rapidly due to insufficient crosslinking. Herein, the authors developed and characterized a thermally-driven, injectable chitosan-genipin hydrogel capable of in situ crosslinking at 37 °C that is mechanically robust, biodegradable, and maintain high biocompatibility. The natural crosslinker genipin is utilized as a thermally-driven, non-toxic crosslinking agent. The chitosan-genipin hydrogel's crosslinking kinetics, injectability, viscoelasticity, swelling and pH response, and biocompatibility against human keratinocyte cells are characterized. The developed chitosan-genipin hydrogels are successfully crosslinked at 37 °C, demonstrating temperature sensitivity. The hydrogels maintained a high percentage of swelling over several weeks before degrading in biologically relevant environments, demonstrating mechanical stability while remaining biodegradable. Long-term cell viability studies demonstrated that chitosan-genipin hydrogels have excellent biocompatibility over 7 days, including during the hydrogel crosslinking phase. Overall, these findings support the development of an injectable, in situ crosslinking chitosan-genipin hydrogel for minimally invasive biomedical applications.  相似文献   

10.
Injectable hydrogels as an important class of biomaterials have gained much attention in tissue engineering. However, their crosslinking degree is difficult to be controlled after being injected into body. As we all know, the crosslinking degree strongly influences the physicochemical properties of hydrogels. Therefore, developing an injectable hydrogel with tunable crosslinking degree in vivo is important for tissue engineering. Herein, we present a dual crosslinking strategy to prepare injectable hydrogels with step-by-step tunable crosslinking degree using Schiff base reaction and photopolymerization. The developed hyaluronic acid/poly(γ-glutamic acid)(HA/γ-PGA) hydrogels exhibit step-bystep tunable swelling behavior, enzymatic degradation behavior and mechanical properties. Mechanical performance tests show that the storage moduli of HA/γ-PGA hydrogels are all less than 2000 Pa and the compressive moduli are in kilopascal, which have a good match with soft tissue. In addition, NIH 3 T3 cells encapsulated in HA/γ-PGA hydrogel exhibit a high cell viability, indicating a good cytocompatibility of HA/γ-PGA hydrogel.Therefore, the developed HA/γ-PGA hydrogel as an injectable biomaterial has a good potential in soft tissue engineering.  相似文献   

11.
快速响应的温敏性聚(N-异丙基丙烯酰胺)水凝胶的合成及表征;N-异丙基丙烯酰胺;水凝胶;温敏性;快速响应  相似文献   

12.
The study focuses on developing hyaluronic acid (1200 kilo Dalton) hydrogels for cartilage regeneration. In spite of being highly biocompatible; a large amount of water absorption and easily degrading nature restricts the use of hyaluronic acid in the field of tissue regeneration. This can be rectified by crosslinking hyaluronic acid with a crosslinking agent such as divinyl sulfone; which results in a biocompatible hydrogel with superior rheological properties. Different amounts of divinyl sulfone have been used for crosslinking hyaluronic acid to get three types of hydrogels with differing properties. Swelling studies, rheology analysis, enzymatic degradation and scanning electron microscopic analysis were conducted on all the different types of hydrogels prepared. Viscoelastic properties of the hydrogel were analyzed so that a hydrogel with better elastic property and stability is obtained. Scanning electron microscopy was used to study the morphology of the HA hydrogels. The cytotoxicity testing was conducted to prove the non-toxic nature of the hydrogels and cell culture studies using adipose mesenchymal stem cells showed better adhesion and proliferation properties in all the three hydrogels. Thus hyaluronic acid hydrogel makes a promising material for cartilage regeneration.  相似文献   

13.
DNA‐tethered poly‐N‐isopropylacrylamide copolymer chains, pNIPAM, that include nucleic acid tethers have been synthesized. They are capable of inducing pH‐stimulated crosslinking of the chains by i‐motif structures or to be bridged by Ag+ ions to form duplexes. The solutions of pNIPAM chains undergo crosslinking at pH 5.2 or in the presence of Ag+ ions to form hydrogels. The hydrogels reveal switchable hydrogel‐to‐solution transitions by the reversible crosslinking of the chains at pH 5.2 and the separation of the crosslinking units at pH 7.5, or by the Ag+ ion‐stimulated crosslinking of the chains and the reverse dissolution of the hydrogel by the cysteamine‐induced elimination of the Ag+ ions. The DNA‐crosslinked hydrogels are thermosensitive and undergo reversible temperature‐controlled hydrogel‐to‐solid transitions. The solid pNIPAM matrices are protected against the OH? or cysteamine‐stimulated dissociation to the respective polymer solutions.  相似文献   

14.
SWELLING BEHAVIOR OF ACRYLAMIDE HYDROGEL IN DIFFERENT SOLVENTS AND pHs   总被引:3,自引:0,他引:3  
Swelling property of acrylamide hydrogels, prepared from aqueous solutions of acrylamide monomer having concentrations in the range of 10-60 wt% by γ-ray irradiation method using a Co-60 gamma radiation source at doses ranging 1-30.0 kGy, has been investigated under various swelling media. These swelling media were basically solvents (solutions), produced by dissolving methanol, ethanol, glucose, sucrose, sodium chloride and sodium persulfate individually with distilled water, and solutions prepared with pHs = 3, 7 and 10. The investigation was performed in order to observe the effect of these solvents and pHs as well as the influence of monomer concentrations, radiation doses and times on swelling behavior of hydrogels. Swelling values were found higher for hydrogels prepared with lower monomer concentrations (ca.20 wt%) and radiation doses (ca. 5 kGy) and showed a leveling off tendency within 24 h. The glucose solvent and the buffer solution of pH = 10 revealed significant increase of swelling of hydrogels as compared to other solutions. Results are explained based on crosslinking density in hydrogel, polymer-solvent/polymer-polymer interactions in solutions,permeability of molecules in solutions and ionization capacity of hydrogel in pH.  相似文献   

15.
Hydrogels of acrylic acid and itaconic acid has been synthesized with different monomers ratios. The swelling process of the different xerogels immersed in water and salt solutions has been studied. The swelling of hydrogels loaded with metal cations (Cu2+, Zn2+) was also investigated. The swelling process was monitored by the increase in the weight of hydrogel as a function of time. The absorption properties of metal ions were studied by using the hydrogel, and different concentrations of copper and zinc solutions (prepared from sulphate salts). The influence of pH on the absorption process was studied. For the absorption of metal ions, the amount of ions absorbed within the hydrogel can be calculated from the initial and equilibrium concentrations of the metal ions in aqueous phase, the weight of the hydrogel, and the volume of solution used. Metal absorption increased when pH, salt concentration in external solution and itaconic acid content is levelled.

The swelling isotherms which consisted of an initial fast increase levelled off asymptotically to the equilibrium swelling limit. The experimental data clearly suggest that our hydrogels follow a second-order kinetics for both cases (unload and metal loaded). The kinetics rate constant and the equilibrium water content, K, have been calculated for every monomer ratio from the experimental data according to the kinetics equation. Both magnitudes decreased as the itaconic acid content decreases in the xerogels.  相似文献   

16.
Self-healing hydrogels with the shear-thinning property are novel injectable materials and are superior to traditional injectable hydrogels.The self-healing hydrogels based on 2-ureido-4[1 H]-pyrimidinone(UPy)have recently received extensive attention due to their dynamic reversibility of UPy dimerization.However,generally,UPy-based self-healing hydrogels exhibit poor stability,cannot degrade in vivo and can hardly be excreted from the body,which considerably limit their bio-application.Here,using poly(l-glutamic acid)(PLGA)as biodegradable matrix,branchingα-hydroxy-ω-amino poly(ethylene oxide)(HAPEO)as bridging molecule to introduce UPy,and ethyl acrylate polyethylene glycol(MAPEG)to introduce double bond,the hydrogel precursors(PMHU)are prepared.A library of the self-healing hydrogels has been achieved with well self-healable and shear-thinning properties.With the increase of MAPEG grafting ratio,the storage modulus of the self-healing hydrogels decreases.The self-healing hydrogels are stable in solution only for 6 h,hard to meet the requirements of tissue regeneration.Consequently,ultraviolet(UV)photo-crosslinking is involved to obtain the dual crosslinking hydrogels with enhanced mechanical properties and stability.When MAPEG grafting ratio is 35.5%,the dual crosslinking hydrogels can maintain the shape in phosphate-buffered saline solution(PBS)for at least 8 days.Loading with adipose-derived stem cell spheroids,the self-healing hydrogels are injected and self-heal to a whole,and then they are crosslinked in situ via UV-irradiation,obtaining the dual crosslinking hydrogels/cell spheroids complex with cell viability of 86.7%±6.0%,which demonstrates excellent injectability,subcutaneous gelatinization,and biocompatibility of hydrogels as cell carriers.The novel PMHU hydrogels crosslinked by quadruple hydrogen bonding and then dual photo-crosslinking of double bond are expected to be applied for minimal invasive surgery or therapies in tissue engineering.  相似文献   

17.
Synthesis reactions of polyacrylamide based hydrogels were automatically monitored in situ by time-domain nuclear magnetic resonance, through a steady-state pulse sequence. Four hydrogel formulations with different amounts of monomer and crosslinking agent were tested and the proposed method demonstrated sensitivity to each formulation without the need for a priori calibration of the spectrometer, even when the hydrogels exhibited substantially different structural characteristics. The results obtained by the proposed method were compared for validation with those generated by traditional reaction monitoring methods, such as UV–Vis spectroscopy, and exhibited similar results, suggesting that time-domain nuclear magnetic constitutes an interesting alternative for the monitoring of solution crosslinking reactions.  相似文献   

18.
导电水凝胶结合了水凝胶和导电高分子电性能的独特特性,并且具有特殊三维网络结构。其中聚苯胺(PANI)由于其独特的导电性能得到了广泛应用,因此PANI导电水凝胶是导电水凝胶中研究最为广泛的。本文综述了PANI导电水凝胶的制备方法及其发展,详述了PANI导电水凝胶的四种制备方法:直接填充、原位聚合、化学交联和物理交联。其中,利用直接填充和原位聚合方法制得PANI水凝胶是较传统的方法,获得的PANI水凝胶是由绝缘的水凝胶组分和导电的PNAI组分组合在一起,电化学性能不高。化学交联法的应用提高了导电水凝胶的电化学性能,物理交联法应用较少。最后,对导电水凝胶材料的应用以及未来发展方向进行了展望。  相似文献   

19.
以过硫酸铵为引发剂(APS)、杨梅综合单宁(TA)作为共引发剂和交联剂,通过自由基聚合制备了高伸长率水凝胶(TIC-gel)。通过红外光谱(FT-IR)、核磁共振(~1 H-NMR)和浸泡尿素的方法研究了TA在TIC-gel中形成化学交联的机理。通过拉伸、压缩测试和流变学测试系统地分析了TIC-gel的力学性能和影响因素。结果表明:相比于传统化学交联水凝胶(PAM-MBA-gel),利用TA制备的凝胶具有高伸长率(2 250%)和高韧性(3.51 MJ/m3)。利用这一新的形成交联的方法所得的凝胶即使在高浓度时也能形成均匀的结构,可以很好地分散应力,为TIC-gel的高伸长率作出贡献。  相似文献   

20.
A chemo-electro-mechanical multi-field model, termed the multi-effect-coupling pH-electric-stimuli (MECpHe) model, has been developed to simulate the response behavior of smart hydrogels subject to pH and electric voltage coupled stimuli when the hydrogels are immersed in a pH buffer solution subject to an externally applied electric field. The MECpHe model developed considers multiphysics effects and formulates the fixed charge density with the coupled buffer solution pH and electric voltage effects, expressed by a set of nonlinear partial differential governing equations. The model can be used to predict the hydrogel displacement and the distributive profiles of the concentrations of diffusive ionic species and the electric potential and the fixed charge density in both the hydrogels and surrounding solution. After validation of the model by comparison of current numerical results with experiment data extracted from the literature, one-dimensional steady-state simulations were carried out for equilibrium of the smart hydrogels subject to pH and electric coupled stimuli. The effects of several important physical conditions, including the externally applied electric voltage, on the distributions of the concentrations of diffusive ionic species, the electric potential, the fixed charge density, and the displacement of the hydrogel strip were studied in detail. The effects of the ionic strength on the bending deformation of the hydrogels under the solution pH and electric voltage coupled stimuli are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号