首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The production of biaxially oriented polypropylene (BOPP) films, by tenter-frame technology in its different steps, was studied to find the crystalline morphology of these films. DMA, DSC, and WAXD measurements and tensile tests were carried out for the cast film, the MDO film (the produced film in the machine direction orienter unit) and BOPP film. The obtained results suggest that the stretchings lead to a strong alignment of the crystals, producing fibers oriented in the stretching direction. This fact can be proved by WAXD, DMA, and tensile tests, moreover the DSC technique is not sensitive to detect these changes.  相似文献   

2.
The effect of uni- and biaxial orientation in the morphology of polypropylene films has been investigated by thermal, dynamic-mechanical, X-ray pole figure and diffraction patterns. In uniaxial oriented films the level of damping is roughly three times higher in the MD direction than it is in the TD direction. The stretching always produces crystals of the form independently of the starting type. Fast DSC scans show two melting peaks indicative of two crystalline species. The Fujiyama et al. model for the crystalline structure can be also applied to the uniaxially stretched films. Upon biaxially orienting, the folded lamellae crystals (kebabs) are the ones to support all the force applied, and when their maximum level of stress slippage is reached they deform following the Peterlin's model, forming a new shish structure. These new shishes are aligned to the TD direction and by linking the original shishes in the MD direction produce a planar orthogonal net of linked shish structures. The space among the shishes is filled with small and imperfect folded lamellae with c-axis in the film plane and preferentially oriented in the MD and TD directions, keeping constant crystallinity density throughout.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

3.
The stereo-defects distribution of polypropylene of the two industry biaxially oriented polypropylene (BOPP) samples T28FE and F28SO with different processing properties was studied through successive self-nucleation and annealing (SSA) technique. It was found that there were more medium isotactic components in sample F28SO, and the isotactic sequence length of polypropylene of sample F28SO was shorter and the isotactic sequence length distribution of polypropylene of sample F28SO was broader, which could be processed well at high-speed orientation during the processing of BOPP films. This result indicates that the isotactic sequence length distribution of polypropylene is related to the processing speed during preparing BOPP films, and the stereo-defects distribution of polypropylene has an important influence on its processing ability.  相似文献   

4.
Highly oriented films were prepared simply by annealing a lamella-forming block copolymer, poly(ethylene oxide-b-styrene) (PEO-b-PS), with high molar mass under a pressure of 0.2 MPa. The oriented structures were characterized by small-angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD). The SAXS measurements showed that the lamellar layers of the block copolymer are highly oriented parallel in the film plane. The WAXD images showed that the c-axis of PEO crystals was oriented normal to the film plane. The Hermans-Stein orientation functions for the lamellar layer and the crystal axis are 0.954 and −0.466, respectively, and are close to the values of perfect orientation. It was considered that the highly oriented structure was formed by the combined effects of shear flow and self-organization of the block copolymer during annealing under stress. The high degree of orientation both for the lamellar layer and crystal planes also suggested that the crystallization in the confined domains results in a high degree of orientation of PEO crystals with respect to the lamellar interface of the block copolymer.  相似文献   

5.
Formation of shish-kebab crystals using a bimodal polyethylene system containing high molecular weight(HMW)component with different ethyl branch contents was investigated.In situ small-angle X-ray scattering(SAXS)and wide-angle X-ray diffraction(WAXD)techniques were used to monitor the formation and evolution of shish-kebab structure sheared at low temperature in simple shear mode and low rate.Only the bimodal PE with no branch formed shish-kebab crystals at the shear temperature of 129℃,and the shish length increased with the crystallization time,while bimodal PE with branch has no observable shish under the same conditions.The degree of crystallization for bimodal PE with no branch increased with time up to above 7%,while those with ethyl branch increased continually up to above 23%.Furthermore,bimodal PE's Hermans orientation factor with no branch increased to 0.60,while those with ethyl branch only increased to a value below 0.15.This study indicated that the shish-kebab crystal formed at the low temperature of 129℃is due to the stretch of entangled chains under shear for the bimodal PE with no branch.Only partly oriented lamellar crystals were formed for the bimodal PE with ethyl branch.All the results at the shear temperatures higher,closed to,and lower than the melting point,the modulation of shish crystals formation owing to different mechanisms of the coil-stretch transition and the stretched network by changing shear temperature was achieved in the bimodal PE samples.  相似文献   

6.
Morphological changes accompanying the deformation of polypropylene filaments with varying degrees of melt-induced orientation are examined using wide-angle x-ray scattering (WAXS), small-angle x-ray scattering (SAXS), and electron microscopy, and their behavior is compared both to completely unoriented film samples and to very highly oriented, hard elastic filaments. Melt-oriented filaments are shown to deform predominantly by a voiding mechanism at low temperatures (<100°C), and destruction of the lamellas to produce fibrils occurs only after extensive drawing. The bimodal crystal texture of the filaments does not appear to greatly affect the low temperature deformation mechanism. High temperature (>100°C) drawing produces a fibrillar structure containing elongated voids.  相似文献   

7.
The morphologies of a series of blown films and machine‐direction‐oriented (MDO) films, all produced from high density polyethylene, were characterized. In the blown film process, the crystalline morphology develops while the melt is under extensional stress. In the MDO process, drawing takes place in the solid state and deforms the crystalline morphology of the starting film. The films were characterized by wide‐angle X‐ray scattering (WAXS), small‐angle X‐ray scattering (SAXS) and atomic force microscopy to determine the lamellar morphology. The effect of the type of deformation on the lamellar morphology was studied and relationships were developed between the lamellar and polymer chain morphology using SAXS and WAXS. Blown and MDO films were found to have very different morphologies. However, an integrated mechanism was developed linking the sequential events in the deformation and morphology development in blown and MDO films. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1834–1844, 2007  相似文献   

8.
Uniaxially orienred semicrystalline poly(ethylene terephthalate) (PET) and poly(propylene) (PP) films were loaded parallel to draw direction at various temperatures. Changes in the submicroscopical structure of the films under load were examined by small and wide-angle x-ray scattering (SAXS; WAXS) and birefringence measurements. WAXS measurements reveal a decrease of the initial high orientation of the chains in the crystallites during deformation. Simultaneously, an increase of the birefringence was detected, indicating an orientation of chains in the amorphous regions. The alteration of the long period reflections in the SAXS patterns give strong evidence that lamellar stacks with different orientation angles according to load direction are present. Depending on the orientation of stacks, the contribution of lamellar separation to sample deformation alters, giving rise to different amounts of density changes in the stacks. Absolute intensity measurements of SAXS using a Kratky apparatus reveal that lamellar separation occurs preferentially below or in the range of the glass-transition temperature at small strain. With increasing strain and temperatures above the glass-transition slip deformation mechanisms become more important. The formation of microvoids was observed at strain near to elongation at break below or in the range of glass-transition temperature.  相似文献   

9.
The orientation of platelets in micro-meter-thick polymer-clay nanocomposite films was investigated with small-angle neutron scattering (SANS), small-angle X-ray scattering (SAXS), and wide-angle X-ray diffraction (WAXD). The films with various clay contents (15–60% by mass fraction) were prepared by a layer-by-layer approach from polymer-clay solutions that led to the formation of a high degree of orientation in both polymer and clay platelets. Shear-induced orientation of polymer-clay solutions is compared with the orientation of polymer-clay films. SANS, SAXS, and WAXD, with beam configurations in and perpendicular to the spread direction of the film, were used to determine the structure and orientation of platelets. In all films, the clay platelets oriented preferentially in the plane of the film. The observed differences in semidilute solutions, with clay surface normal parallel to the vorticity direction, versus bulk films and with clay surface normal parallel to the shear gradient direction at clay mass fractions of 40 and 60%, were attributed to the collapses of clay platelet during the drying process. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 3237–3248, 2003  相似文献   

10.
KMnO4-treated functionalized biaxially oriented polypropylene (BOPP) films coated with a hybrid material were synthesized, and the abrasion resistance properties of the resultant films were examined. The presence of functional groups was confirmed using Fourier-transform infrared spectroscopy, transmittance measurements were performed using an ultraviolet–visible spectrophotometer, and the intensities of the films were measured using a universal testing machine. The abrasion resistance and roughness of the composite films were significantly affected by modification of the BOPP film. The transmittance of the modified films obviously improved with the addition of Al2O3 sol, and the mechanical properties of the treated films were improved by the coatings. The abrasion resistance of one of the functionalized films (sample S159) increased by 79.5 % compared with that of the original film.  相似文献   

11.
Biaxially oriented polyamide-6 (BOPA) film has been widely used in many packaging applications. However, the BOPA film with excellent toughness is still required when utilizing in the field of soft-packaged lithium - ion batteries, pharmaceutical blister packaging, or frozen food packaging especially for vacuum packaging of irregular-shaped food products. The purpose of this study was to improve the toughness of BOPA films by toughening with poly(ether block amide) (PEBA) (BOPA/PEBA films) based on the simultaneous biaxial stretching technology. The crystal structure, morphology, optical properties, barrier, and mechanical properties of BOPA/PEBA films were investigated. The results showed that the incorporation of PEBA into BOPA films slightly decreased the melting temperature and crystallinity of PA6, and the BOPA/PEBA films exhibited only α-form crystals and no preferential orientation in the machine direction (MD) and transition direction (TD). The morphological observation showed that higher addition of PEBA led to the formation of microvoids due to the poor compatibility between PA6 and PEBA. As a result, the transmittance and oxygen barrier properties of the BOPA/PEBA films decreased. In addition, mechanical analysis suggested that the addition of PEBA could effectively improve the toughness of BOPA film.  相似文献   

12.
Syndiotactic polypropylene (sPP) was cast-extruded with a laboratory single screw extruder, obtaining a crystalline and still highly transparent film. The structural studies showed that the film crystallized at room temperature in the disordered helical form I, containing a fraction of a mesophase with the chains in trans-planar conformation. X-ray patterns, taken either along the extrusion direction (MD) or along the orthogonal directions (TD and ND), indicated a low orientation of the c axis parallel to the machine direction (MD) and a partial orientation of the a axis along the transverse direction (TD). Mechanical properties performed in either direction showed a very similar behaviour, but a different strain at the breaking point. The mechanical parameters were derived in both directions.  相似文献   

13.
张杰  阮杰  闫寿科 《高分子学报》2017,(9):1524-1530
利用电子显微镜结合电子衍射研究了左旋聚乳酸/聚(ε-己内酯)(PLLA/PCL)共混物在取向聚乙烯(PE)基底上的结晶行为.纯PLLA在取向PE基底上能够附生结晶,主要形成分子链相互垂直的片晶结构.PCL在PE基质上也能发生附生结晶,导致两者分子链平行.PLLA/PCL共混物在取向PE基底上结晶的形态结构依赖于共混组成.在PLLA含量大于95 wt%时,PCL不影响PLLA与PE的附生结晶行为.当PCL含量增加至10 wt%时,PLLA在PE上的附生结晶行为受到了一定程度的影响.当PCL含量超过40 wt%时,PLLA在PE上的附生结晶被抑制,取而代之是PCL在PE取向基质上附生结晶,产生两者分子链平行的取向片晶.另外,在PLLA含量在50 wt%~30 wt%之间时,体系产生明显的微相分离,微相分离并不影响PCL与PE的附生结晶,在PCL的富集区仍然发生平行链附生结晶,而PLLA的富集区结构变得模糊.当PLLA含量少于20 wt%时,微相分离不明显,少量PLLA应该分散在PCL片晶间的非晶区.  相似文献   

14.
The structure of carbon fibres consists of stacks of carbon layers oriented parallel to the fibre axis. From X-ray wide-angle scattering studies (WAXS) one obtains various structural parameters characterizing the perfection of the stacking and the orientation of the layers. The latter is quantitatively related to the tensile modulus of the fibres. Small-angle scattering studies (SAXS) are used to determine size, shape and orientation of microvoids. For carbon fibres with high heat treatment temperatures (HTT), a correlation between microvoid content and elongation at break is observed which indicates an optimum value for the microvoid content. Electrochemical intercalation is used to obtain information on the accessibility of the carbon layer structure.  相似文献   

15.
A set of unimodal and bimodal high density polyethylene (HDPE) pipe resins of different grade were characterized to investigate the relation between branched structure and resistance to SCG. The results showed that the SCB of bimodal PE100RC was more likely to incorporate into long chains and the entanglement of tie molecules was higher, thus making thicker lamellae and more complete lamellae network. The strain hardening (SH) modulus proved bimodal PE100RC had better long term performance compare with unimodal and bimodal PE100. Besides, small-angle/wide-angle X-ray scattering (SAXS/WAXS) presented the lamellae evolution of bimodal PE100RC and PE100 under uniaxial extension. In the transition of shish-kebab to fibrillar crystals, the orientation increased with the rising of strain and presented a two-stage process with the turning point at the strain of about 1.0. And the long period curves exhibited a three-stage process which were yeilding, softening and hardening stage. In the yeilding region, the long period of PE100RC grew at a faster rate compared with PE100 as the amorphous region of PE100RC was easier to stretch. At the end of yield region, the lamellae thickness of PE100 was smaller than before, while that of PE100RC became larger. It can be inferred that in PE100, only fragmentation of lamellae can be observed, while in PE100RC, the recrystallization as well as destruction of lamellae occurred.  相似文献   

16.
Heterogeneous deformation in the form of dilatational bands is observed under certain biaxial stress states that closely resembles uniaxial necking in LLDPE blown films. The formation and orientation of dilatational bands is a function of film morphology and stress state. The dilatational bands form, with their lengths aligned with the machine direction (MD) of the film, under equibiaxial stress states and nonequibiaxial stress states when the higher principle stress is coincident with the transverse direction (TD). However, homogeneous deformation is observed if the higher principle stress is coincident with the MD. Similarly, uniaxial specimens show necking when the stress is applied in the TD and affine deformation when the stress is applied in the MD. Neck boundary propagation under uniaxial loading is due primarily to the consumption of undrawn material, while dilatational band boundary propagation under an equibiaxial loading also includes simultaneous continued deformation of the drawn material. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2651–2663, 1999  相似文献   

17.
Biaxially oriented polypropylene (BOPP) is widely used in packaging. Although its orientation increases mechanical strength and clarity, BOPP suffers from a high oxygen transmission rate (OTR). Multilayer thin films are deposited from water using layer‐by‐layer (LbL) assembly. Polyethylenimine (PEI) is combined with either poly(acrylic acid) (PAA) or vermiculite (VMT) clay to impart high oxygen barrier. A 30‐bilayer PEI/VMT nanocoating (226 nm thick) improves the OTR of 17.8 μm thick BOPP by more than 30X, rivaling most inorganic coatings. PEI/PAA multilayers achieve comparable barrier with only 12 bilayers due to greater thickness, but these films exhibit increased oxygen permeability at high humidity. The PEI/VMT coatings actually exhibit improved oxygen barrier at high humidity (and also improve moisture barrier by more than 40%). This high barrier BOPP meets the criteria for sensitive food and some electronics packaging applications. Additionally, this water‐based coating technology is cost effective and provides an opportunity to produce high barrier polypropylene film on an industrial scale.

  相似文献   


18.
We report a templating effect of uniaxially oriented melt-drawn polyethylene (MD-PE) films on α-helical poly(L-lysine)/poly(styrenesulfonate) (α-PLL/PSS) complexes deposited by the layer-by-layer (LBL) method. The melt-drawing process induced an MD-PE fiber texture consisting of nanoscale lamellar crystals embedded in amorphous regions on the MD-PE film surface whereby the common crystallographic c axis is the PE molecular chain direction parallel to the uniaxial melt-drawing direction. The MD-PE film and the α-PLL/PSS deposit were analyzed by atomic force microscopy (AFM) and in situ attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) using polarized light as a complementary method. Both methods revealed that α-PLL/PSS complexes adsorbed at the MD-PE surface were anisotropic and preferentially oriented perpendicular to the crystallographic c direction of the MD-PE film. Quantitatively, from AFM image analysis and ATR-FTIR dichroism of the amide II band of the α-PLL, mean cone opening angles of 12-18° for both rodlike α-PLL and the anisotropic α-PLL/PSS complexes with respect to the PE lamellae width direction were obtained. A model for the preferred alignment of α-PLL along the protruding PE lamellae is discussed, which is based on possible hydrophobic driving forces for the minimization of surface free energy at molecular and supermolecular topographic steps of the PE surface followed by electrostatic interactions between the interconnecting PSS and the α-PLL during layer-by-layer adsorption. This study elucidates the requirements and mechanisms involved in orienting biomolecules and may open up a path for designing templates to induce directed protein adsorption and cell growth by oriented polypeptide- or protein-modified PE surfaces.  相似文献   

19.
Oriented poly(vinylidene fluoride) (PVDF) films with β‐form crystals have been commonly prepared by cold drawing of a melt‐quenched film consisting of α‐form crystals. In this study, we have successfully produced highly oriented PVDF thin films (20 µm thick) with β‐crystals and a high crystallinity (55–76%), by solid‐state coextrusion of a gel film to eight times the original length at an established optimum extrusion temperature of 160°C, some 10°C below the melting temperature. The resultant drawn films had a highly oriented (orientation function fc = 0.993) fibrous structure, showing high mechanical properties of an extensional elastic modulus of 8.3 GPa and tensile strength of 0.84 GPa, along the draw direction. Such highly oriented and crystalline films exhibited excellent ferroelectric and piezoelectric properties. The square hysteresis loop was significantly sharper than that of a conventional sample. The sharp switching transient yielded the remnant polarization Pr of 90 mC/m2, and the electromechanical coupling factor kt was 0.24 at room temperature. These values are about 1.5 times greater than those of a conventional β‐PVDF film. Thus, solid‐state coextrusion near the melting point was found to be a useful technique for the preparation of highly oriented and highly crystalline β‐PVDF films with superior mechanical and electrical properties. The morphology of the extrudate relevant to such properties is discussed. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2549–2556, 1999  相似文献   

20.
Oriented poly(vinylidene fluoride) (PVDF) films consisting of β crystals were prepared by the solid‐state coextrusion (SC) of a gel film near the melting temperature (Tm) and by conventional cold tensile drawing (TD) of a melt‐quenched film. These films were annealed over the temperature range of 75–190 °C (below and above the static Tm) while the sample length was kept constant or constant loads were applied. After annealing with the sample length kept constant, the dynamic Young's modulus markedly decreased because of the relaxation of oriented amorphous chains, as shown by infrared spectroscopy. In contrast, annealing under a constant load improved the chain orientation in both the crystalline and amorphous regions, resulting in an increase in the modulus from an initial 10.5 to 14.3 GPa for the SC and from an initial 3.3 to 4.8 GPa for the TD. The SC, annealed at 190 °C with a constant load corresponding to an initial tension of 200 MPa, exhibited an extreme crystalline‐chain orientation of 0.998 and a modulus of 14.3 GPa, among the highest values ever reported for PVDF. Although the remanent polarization (Pr) of the TD increased slightly from the initial 62 to 68 mC/m2, Pr of the SC stayed constant at 100 mC/m2 independently of the annealing conditions. This suggests that the Pr value of 100 mC/m2 approached the equilibrium value for this PVDF sample containing 3.5 mol % structural defects. Therefore, although the modulus and Pr of the TD increased slightly with annealing, the maximum values achieved by annealing were markedly lower than those of the SC and annealed SC. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1701–1712, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号