首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
纪又新  李良彬 《高分子科学》2017,35(12):1508-1516
A setup of blown film machine combined with in situ synchrotron radiation X-ray diffraction measurements and infrared temperature testing is reported to study the structure evolution of polymers during film blowing. Two homemade auto-lifters are constructed and placed under the blown machine at each end of the beamline platform which move up and down with a speed of 0.05 mm/s bearing the 200 kg weight machine. Therefore, structure development and temperature changes as a function of position on the film bubble can be obtained. The blown film machine is customized to be conveniently installed with precise servo motors and can adjust the processing parameters in a wide range. Meanwhile, the air ring has been redesigned in order to track the structure information of the film bubble immediately after the melt being extruded out from the die exit. Polyethylene (PE) is selected as a model system to verify the feasibility of the apparatus and the in situ experimental techniques. Combining structure information provided by the WAXD and SAXS and the actual temperature obtained from the infrared probe, a full roadmap of structure development during film blowing is constructed and it is helpful to explore the molecular mechanism of structure evolution behind the film blowing processing, which is expected to lead to a better understanding of the physics in polymer processing.  相似文献   

2.
The structural evolution during the linear low-density polyethylene (LLDPE) film blowing has been studied with a combination of home-made blown film apparatus and in situ WAXS and SAXS measurements. Analyzing the evolution of orientation parameters and crystallinity of the bubble shows that the blown film process can be divided into four regions. Distinctly different features of LLDPE bubble are observed in first three regions: (a) lower orientation parameters during the blown film process, (b) higher crystallinity is required to form a deformable crystalline crosslinked network, and (c) the weaker stretching effect and the difficulty of reaching equilibrium when the crystal network deforms. These results should provide a basis for understanding the poor blown film stability of LLDPE. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1404–1412  相似文献   

3.
Experiments are carried out to verify a theory developed to correlate the strain history of the polymer during film blowing to the ultimate physical properties of the film. The theory predicts that the amount of strain put into the film once it starts to freeze, defined as strain in the amorphous region and the plastic strain, has a dominant effect on the film properties. Two grades of low and linear low density polyethylene, experimental resins supplied by Mobil chemical company, were used to produce the blown film yielding a 1.25 mil film at the for all experimental runs. Film surface and bulk temperatures, along the machine direction and around the bubble, were measured using the infra-red techniques to identify the points where film starts to crystallize. A video digitization technique was used to measure the bubble kinematics. Film properties were measured using standard ASTM methods. The results indicate a correlation between the amount of strain and a measure of stress with ultimate physical properties of the blown film. This principle leads to the correlation of both the machine and transverse film properties on the same surface. The results obtained can potentially be exploited by designing the blown-film equipment and processing conditions such that optimal bubble stretching produces desired film properties.  相似文献   

4.
A novel apparatus was designed and constructed combining polymer extrusion processing and x-ray scattering. It allows direct, real time monitoring of structure and temperature development in polymer material during extrusion. The apparatus involves a vertical industrial extruder equipped with a four-roll stretching device to mimic the processing environments of uni-axially oriented films or sheets, a simultaneous small and wide angle x-ray scattering system and an infrared thermometer as detection unit. The charging barrel of the extruder and the stretching device can be moved upward and downward precisely. By moving the sample along the center line, structure and temperature development as a function of position can be obtained. The performance of the apparatus was verified by a test experiment, which allows us to establish the relationship between processing parameters and evolution of structure with different length scales, and may lead to a better understanding of the physics in polymer processing.  相似文献   

5.
The morphologies of films blown from a low‐density polyethylene (LDPE), a linear low‐density polyethylene (LLDPE), and their blend have been characterized and compared using transmission electron microscopy, small‐angle X‐ray scattering, infrared dichroism, and thermal shrinkage techniques. The blending has a significant effect on film morphology. Under similar processing conditions, the LLDPE film has a relatively random crystal orientation. The film made from the LDPE/LLDPE blend possesses the highest degree of crystal orientation. However, the LDPE film has the greatest amorphous phase orientation. A mechanism is proposed to account for this unusual phenomenon. Cocrystallization between LDPE and LLDPE occurs in the blowing process of the LDPE and LLDPE blend. The structure–property relationship is also discussed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 507–518, 2002; DOI 10.1002/polb.10115  相似文献   

6.
The morphology of ionic aggregates in semicrystalline Zn‐ and Na‐neutralized poly(ethylene‐ran‐methacrylic acid) (EMAA) ionomer blown films has been explored with scanning transmission electron microscopy (STEM) and small angle X‐ray scattering. The ionic aggregates of Zn‐EMAA are spherical, monodisperse, and uniformly distributed in as‐extruded pellets and blown films prepared at low and high blow‐up ratio. Thus, although the biaxial stresses of film blowing are sufficient to alter the PE superstructure, the ionic aggregates in Zn‐EMAA are unaffected. In contrast, the morphology of Na‐EMAA as detected by STEM changes from featureless in the as‐extruded pellets to a heterogeneous distribution of Na‐rich aggregates in the blown films. This transformation in Na‐EMAA morphology is consistent with our earlier study of quiescent annealing, suggesting that the morphological change is the result of thermal processing rather than the biaxial stresses of film blowing. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3549–3554, 2005  相似文献   

7.
The copolymerization of ethylene and different α-olefins could result in polyethylene (PE) with different structural topologies, and lead to polyethylene products with different macroscopic performances. Herein, three different polyethylene samples, namely low-density polyethylene (l-PE), metallocene catalyzed ethylene-hexene copolymer (h-PE) and ethylene-octene copolymer (o-PE), were selected as representatives to construct the structure-process-property relationship during film blowing. The detailed crystal-based network evolution during film blowing was first characterized by in-situ synchrotron radiation X-ray scattering. The crystallization process of l-PE film is determined by the coupling effects of temperature and flow, while those of h-PE and o-PE films are dominated by the temperature. Furthermore, the hierarchical crystal structure from the molecular scale to micrometers of final films and segmental dynamics were systematically characterized by multiple ex-situ characterization techniques, i.e. Solid-State NMR, FTIR, SEM. l-PE film shows the crystalline morphology of the row-nucleated structure, whereas h-PE and o-PE show spherulite-like superstructure with better mechanical properties. The current study tentatively constructs the relation of primary chemical structure, microstructural evolution and macroscopic performances of different polyethylene copolymers during film blowing.  相似文献   

8.
The fine structure of polyethylene film has been investigated by using a high-resolution scanning electron microscope equipped with a field emission source. The original film surface of a-axis-oriented blown polyethylene film and the surface of a necked region formed by drawing the film in the machine direction were observed. High magnification electron micrographs indicate that the basic unit of internal texture of this film consists of piled-lamellae units, each pile containing three to ten lamellar crystal sheets. The piled-lamellae unit acts as one body and does not separate into single lamellae during deformation. Many tie fibrils are formed between adjacent piled-lamellae units, when the film is drawn in the machine direction. Although little attention has been given to this mechanism, it is important in deformation. This fact seems to be reflected in different shapes of the stress-strain curves of films drawn the machine direction and perpendicular to it.  相似文献   

9.
In this study, we report the first production of two-dimensionally well-ordered molecular multilayers (i.e., with a well-defined molecular lamellar structure) based on the antiparallel beta-sheet chain conformation in thin films of a brush polypeptide, poly(S-n-hexadecyl-dl-homocysteine) (PHHC), through the use of a simple spin-coating process and the quantitative structural and property analysis of the thin films using a grazing incidence X-ray scattering technique combined with Fourier transform infrared spectroscopy and differential scanning calorimetry. These analyses provide detailed information about the structure and molecular conformation of the self-assembled lamellae in the PHHC thin film, which is not easily obtained using conventional techniques. Moreover, we used the in situ measurements carried out at various temperatures and the data analyses to establish mechanisms for the evolution of the self-assembled lamellar structures in the film and for their melting. In addition, we propose molecular structure models of the PHHC polymer molecules in the thin film at various temperatures.  相似文献   

10.
In this work thermal decomposition of ethoxylated 2,2-bis-(4-hydroxyphenyl)propane (BPA) and oxyalkylenated 2,6-toluyldiamine (TDA)-based rigid polyurethane (PU) foam, blown with pentane, is described. Thermogravimetry coupled with mass spectrometry (TG–MS) and thermogravimetry coupled with Fourier transform infrared spectroscopy (TG–FTIR) results of the evolution of volatile products during the degradation and gas chromatography coupled with mass spectrometry analysis of condensed products of PU foam pyrolysis (Py/GC–MS) are presented. Four temperature ranges of volatile products emission were detected under inert atmosphere—pentane used as blowing agent volatilizes in first range, the second one is dominated by dissociation reaction of urethane bonds by which first order amines, CO2 and vinyl bonds, are formed, while complex reactions with formation of secondary amine and CO2 occur in the third stage. Fourth stage is visible by further CO2 evolution. Ethylene oxide and derivatives of dioxane, formed due to the presence of oxyalkylene chains, act as fuel during the burning of PU foam.  相似文献   

11.
Low density polyethylene nanocomposites were prepared using differently modified montmorillonite (MMT) and different compatibilizers. The best results were obtained for MMT with largest gallery distance. The most exfoliated system was further optimized for superior mechanical properties by varying the compounding condition. The criteria were mechanical properties of nanocomposites and X-ray proofs of exfoliation. The optimized nanocomposites were used for film blowing. The effect of blow ratio on mechanical properties and oxygen permeation of films was evaluated for two best nanocomposites and two films blown from pristine polyethylene. The texture of crystalline phase of blown films was analyzed by X-ray pole figure technique, SAXS and AFM. Two components of texture were detected, the first component related to the molecular orientation of polyethylene by film blowing and take-up and the second connected with the formation of free surfaces of the film. The crystallinity degree from DSC and long period determined from SAXS of polyethylene component were nearly independent of the additives. It indicated that the compatibilizer was preferentially located around clay platelets and did not enter the amorphous layers of polyethylene. Also the orientation of clay platelets was determined by FTIR using 1080 cm−1 band characteristic for Si-O bonds. A clear correlation of oxygen permeativity of blown films with clay platelets orientation and degree of exfoliation was evidenced.  相似文献   

12.
Natural and accelerated weathering tests were performed to inspect the effect of antioxidants on low-density polyethylene (LDPE) films used as greenhouse covering materials. The LDPE pellets were extruded and blown into a film using a twin-screw extruder and film blowing machine, respectively. The film with 0.2 wt.% Alkanox-240 (AN-0.2) stabilizer showed the highest tensile strength (11 MPa) among all samples during 90 days of natural as well as accelerated weathering. The elastic modulus of the film with 0.5 wt.% of Good-rite (GR-0.5) increased after weathering from approximately 91.8 to 138.9 MPa, and showed the best performance. Morphological images of the neat LDPE film during weathering showed some cracks and grooves, while those of stabilized films showed fewer cracks. Moreover, the estimation of the rapidity of the accelerated method compared to the natural one was approximately nine times faster in Riyadh during the summer season (June–August). The present study suggests that the addition of antioxidants can improve the tensile strength, stability, and, hence, the effectiveness of these films. The best antioxidants were found to be 0.2 wt.% Alkanox and 0.5 wt.% Good-rite antioxidants.  相似文献   

13.
The kinetics of thermal evolution of deuterium from ultrathin TiD y /Pd bilayer films has been studied by means of thermal desorption mass spectrometry (TDMS). Using a combination of transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy, we made a study of the complex structural and chemical transformations of the TiD y /Pd film as a result of TDMS-induced evolution of deuterium and simultaneous annealing of this film. Both preparation and TDMS processing of the TiD y /Pd bilayer films were performed in situ under UHV conditions. It was found that the high-temperature TDMS processing of an ultrathin TiD y /Pd film, which was carried out in a relatively short time, leads to a significant film structure transformation. Energy-filtered TEM mapping of cross-section images and EDX analysis revealed extensive interdiffusion of Ti and Pd within the Ti–Pd bi-layer film. This process leads to a progressive change in chemical composition within the surface and subsurface area of the film during the TDMS processing. As the temperature of TDMS heating increases, segregation of Ti at the Pd top layer surface becomes significant. As a result, the kinetics of deuterium desorption is progressively changed during TDMS; at lower temperatures, the kinetics is limited by recombinative processes at the Pd surface, at temperatures beyond 500 K, it becomes dominated by interdiffusion of Ti into the Pd surface.  相似文献   

14.
Cross-linked polymers have particular rheological responses during reprocessing, e. g. if the material is recycled, special processing conditions are required. Other virgin polymers can be used as a blending component to enhance rheological properties. Bi-layer film of EVA/LLDPE was produced on a blown film line and cross-linked by high-energy radiation. This film was ‘agglomerated’ then reprocessed in a twin-screw extruder with virgin LLDPE and blown into film. The miscibility of the blend components was then studied using a TA Instruments temperature modulated differential scanning calorimeter (TMDSC). It was found that the cross-linked EVA/LLDPE scrap and the LLDPE have a slight miscibility in the liquid state. A bigger portion of LLDPE was miscible (dissolved) in EVA in low LLDPE blends. A positive deviation in the heat capacity of the LLDPE component compared to the additivity rule indicated melting to be more reversible in the first heating cycle. This initial miscibility was attributed to being induced by high shear during processing. A smaller positive deviation also occurred in the second heating cycle. This was attributed to intrinsic miscibility. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
The problem of monitoring the structural and morphological evolutions of thin films of organic molecular materials during their growth by organic molecular beam epitaxy and in the postgrowth stage is addressed here by a combination of in situ optical reflectance anisotropy measurements, ex situ optical and morphological investigations, and theoretical simulation of the material optical response. For alpha-quaterthiophene, a representative material in the class of organic molecular semiconductors, the results show that molecules crystallize in the first stage of growth in metastable structures, even when deposition is carried out at room temperature. In the postdeposition stage, the film structure evolves within a few days to the known equilibrium structure of the low temperature polymorph. When deposition is carried out at low substrate temperatures, an evolution of the film morphology is also demonstrated.  相似文献   

16.
李良彬 《高分子科学》2015,33(5):754-762
A biaxial stretching equipment was designed and constructed to enable fundamental studies of the relationship between film processing conditions and structures of oriented film products. With programmable drive motors and scissorlike mechanism, all stretching modes, including uniaxial stretching with constant and free width, simultaneous and sequential biaxial stretching, can be applied to a square-shaped sheet. Parameters related to film stretching manufacturing, such as temperature, draw ratio and stretching speed can be set independently to meet the requirement of different polymers. The force information during stretching is recorded by two miniature tension sensors in two directions independently, which can monitor the mechanical stimulus and stress response. Using this equipment, experiments are conducted to investigate the influence of stretching parameters on the structure of polypropylene films, which provides an effective method to tailor the processing conditions to obtain the films with desired properties.  相似文献   

17.
Summary: Commercially available polymer Bioflex® 219F, blend of polylactic acid and biodegradable co-polyester, was used for film preparation, performed on mono-extrusion blown moulding machine. Resulting thin film was investigated on biodegradability in composting conditions for 6 weeks. The influence of microbial attack on mechanical, physico-chemical properties, weight loss and surface morphology was tested weekly. The results obtained during 6 weeks of composting indicate relatively good accessibility to biological degradation. Moreover, the time course of studied properties was observed through the test period.  相似文献   

18.
Polarized infrared measurements were made on polymer samples to obtain the structural changes occurring during the orientation process. The absorbances of the infrared bands were measured by determining the three components of the absorbance. Two components were obtained directly with plane-polarized light while the third is obtained by tilting the sample and extrapolating. Corrections were made for machine optics polarization, sample birefringence, polarizer inefficiency, anisotropy of the index of refraction, and scattering from the film surface. Data are reported for polyethylene obtained from cold-drawn specimens as a function of draw temperature. Polyethylene exhibits no strain-induced crystallization as a result of the chain-alignment process. Annealing of the drawn samples reperfects the distorted crystals.  相似文献   

19.
Zein films plasticized with oleic acid were formed by solution casting, by the stretching of moldable resins, and by blown film extrusion. The effects of the forming process on film structure were investigated by X-ray diffraction. Wide-angle X-ray scattering (WAXS) patterns showed d-spacings at 4.5 and 10 A, which were attributed to the zein alpha-helix backbone and inter-helix packing, respectively. The 4.5 A d-spacing remained stable under processing while the 10 A d-spacing varied with processing treatment. Small-angle X-ray scattering (SAXS) detected a long-range periodicity for the formed films but not for unprocessed zein, which suggests that the forming process-promoted film structure development is possibly aided by oleic acid. The SAXS d-spacing varied among the samples (130-238 A) according to zein origin and film-forming method. X-ray scattering data suggest that the zein molecular structure resists processing but the zein supramolecular arrangements in the formed films are dependent on processing methods. Structural model for a zein molecular aggregate (based on Matsushima et al.10). Rectangular prisms of individual zein molecules are hexagonally aligned parallel to each other.  相似文献   

20.
《先进技术聚合物》2018,29(6):1706-1717
Biodegradable poly(lactic acid) (PLA)/poly(butylene adipate‐co‐terephthalate) (PBAT) blends and films were prepared using melt blending and blowing films technique in the presence of chain extender‐Joncryl ADR 4370F. The ADR contains epoxy functional groups and used as a compatibilizer. The morphological, mechanical, rheological, thermal, and crystalline properties of the PLA/PBAT/ADR blown films were studied. Scanning electron microscopy micrographs of the films revealed more ductile deformation with increasing PBAT content. The addition of PBAT enhanced the toughness of the PLA film. Tensile tests indicated that the elongation at break increased from 20.5% to 334.6% in the machine direction and from 7.1% to 715.9% in the transverse direction. The Young modulus increased from 2690.5 to 395.6 MPa in the machine direction and from 2623.5 to 154.0 MPa in the transverse direction. The sealing strength of 40/60/0.15 PLA/PBAT/ADR film was the highest among all the samples up to 9.4 N 15 mm−1. These findings gave important implications for designing and manufacturing polymer packaging materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号