首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of nanosilica on the concentration fluctuation of polystyrene/poly (vinyl methyl ether) (PS/PVME) mixtures was investigated during phase separation. The amplitude of concentration fluctuation was quantified by dielectric spectrums based on the idea of Lodge–Mcleish model and the linearized Cahn–Hilliard theory could describe the amplitude evolution of concentration fluctuation at the early stage of phase separation. Hydrophilic nanosilica A200 dispersed in PVME‐rich phase behaved an obvious inhibition effect on the concentration fluctuation of blend matrix, while hydrophobic nanosilica R974 dispersed in PS‐rich phase had little effect on the concentration fluctuation. The kinetics and amplitude evolution of concentration fluctuation during phase separation for PS/PVME/A200 nanocomposites were remarkably restrained due to the surface adsorption of PVME on A200. As the segmental dynamics of PVME and PS in homogeneous matrix was hardly influenced by A200 and R974, the enhanced miscibility and the significantly constrained flow relaxation of PVME chains might contribute to the retarded concentration fluctuation of PS/PVME/A200 nanocomposites. While the weak interaction between R974 and components of blend matrix and little effect of R974 on the molecular dynamics of PS chains may result in the weak retardation of concentration fluctuation for blend matrix. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1337–1349  相似文献   

2.
The effect of phase‐separated morphology on the rheological properties of polystyrene/poly(vinyl methyl ether) (PS/PVME) blend was investigated by optical microscopy (OM), light scattering (LS) method, and rheology. The blend had a lower critical solution temperature (LCST) of 112°C obtained by turbidity experiment using LS at a heating rate of 1°C/h. Three different blend compositions (critical 30/70 PS/PVME by weight) and two off‐critical (50/50 and 10/90)) were prepared. The rheological properties of each composition were monitored with phase‐separation time after a temperature jump from a homogeneous state to the preset phase‐separation temperature. For the 30/70 and 50/50 blends, it was found that with phase‐separation time, the storage and loss moduli (G′ and G″) increased at shorter times due to the formation of co‐continuous structures resulting from spinodal decomposition. Under small oscillatory shearing, shear moduli gradually decreased with time at longer phase‐separation times due to the alignment of co‐continuous structures toward the flow direction, as verified by scanning electron microscopy. However, for the 10/90 PS/PVME blend, the rheological properties did not change with phase‐separation times. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 889–906, 1999  相似文献   

3.
The phase behavior and phase‐separation dynamics of polystyrene/polyvinyl methyl ether (PS/PVME) blend with a critical composition of 70 vol % PVME were examined with a light scattering technique under a shear‐rate range of 0.1–40 s?1. If the shear rates were less than 8 s?1 and the starting temperatures of the measurement were 343 and 383 K, respectively, two cloud points were observed, whereas after the shear rate was higher than 8 s?1, only one cloud point existed, 20 K higher than that of the static state of the blend. Investigation of the phase‐separation dynamics at 443 K suggested that in the vorticity direction the phase‐separation behavior at the early stage and the later stage can be explained by Cahn–Hilliard linearized theory and the exponent growth law, respectively. Phase separation occurs after a shearing time, which was called a delay time τd. The delayed time τd, the apparent diffusion coefficient, and the exponent term of the blend show strong dependence on shear rates. A theoretical prediction of the phase behavior of PS/PVME under a shear flow field by introducing an elastic energy term into Flory's equation‐of‐state theory was made, and the prediction was consistent with the experimental results. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 661–669, 2003  相似文献   

4.
In this work, ultrafast differential scanning calorimetry (UFDSC) is used to study the dynamics of phase separation. Taking poly(vinyl methyl ether)/polystyrene (PVME/PS) blend as the example, we firstly obtained the phase diagram that has lower critical solution temperature (LCST), together with the glass transition temperature (Tg) of the homogeneous blend with different composition. Then, the dynamics of the phase separation of the PVME/PS blend with a mass ratio of 7:3 was studied in the time range from milliseconds to hours, by the virtue of small time and spatial resolution that UFDSC offers. The time dependence of the glass transition temperature (Tg) of PVME‐rich phase, shows a distinct change when the annealing temperature (Ta) changes from below to above 385 K. This corresponds to the transition from the nucleation and growth (NG) mechanism to the spinodal decomposition (SD) mechanism, as was verified by morphological and rheometric investigations. For the SD mechanism, the temperature‐dependent composition evolution in PVME‐rich domain was found to follow the Williams–Landel–Ferry (WLF) laws. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1357–1364  相似文献   

5.
Summary: A mixture of poly(vinyl methyl ether) (PVME) and a polystyrene derivative bearing cinnamate groups (PSC) was chemically designed so that its phase separation can be tunable by visible light for computer‐assisted irradiation (CAI) experiments. This PSC/PVME blend exhibits a lower critical solution temperature (LCST) and undergoes phase separation upon irradiation with 405 nm visible light. The phase separation was induced by photodimerization of the cinnamate moieties in the presence of 5‐nitroacenaphthene used as a photosensitizer. It was found that for visible light with high intensity, phase separation process was almost frozen by photodimerization of the cinnamate groups which act as a photo‐cross‐linker for the PSC component. It is demonstrated in this work that by using this PSC/PVME blend, phase separation restricted to the micrometer scales can be induced and manipulated by irradiation using a computer‐controlled digital projector. These preliminary results open a new route for spatio‐temporal manipulation of phase separation in photo‐reactive polymer blends.

Computer‐assisted irradiation method for a polymer blend with phase separation drivable by visible light.  相似文献   


6.
The self-assembly of a binary mixture of polystyreneblock-polybutadiene (SB) and poly(methyl vinyl ether) (PVME) was studied by transmission electron microscopy and time-resolved light scattering. The self-assembly studied involved first microphase separation, in which a microdomain structure composed of polybutadiene block chains (PB) was formed in a matrix composed of polystyrene block chains (PS) and PVME homopolymers, and subsequently macrophase separation of the PVME from the microdomain phase of SB. The microphase separation was induced in a film preparation process using a solution cast method at room temperature. The macrophase separation was induced by rapidly heating the film specimens to above a critical temperature where PVME and PS undergo spinodal decomposition (SD). This complex phase transition, involving microphase separation followed by macrophase separation, was found to generate a superlattice structure (or a modulated structure) with two characteristic spacings: Amacro associated with the SD and Amicro associated with the microphase separation, both being generally time-dependent. The growth of the “macrodomains” was found to be pinned at Amacro ˜ 840 nm due to the elastic effect of the microdomain structure. The microdomain structure with Amicro ˜ 57 nm was found to undergo a morphological transition (a transition between two ordered phases of block copolymers) as a consequence of the local composition change of the two polymers induced by the SD.  相似文献   

7.
Photooxidation of blends of polystyrene and poly (vinyl methyl ether) was studied at 30°C. The oxygen uptake by PS was negligible but PVME oxidized readily. The induction period of oxidation of PVME was prolonged by the presence of PS. The steady state rate of oxidation of the blend was strongly influenced by the segmental mobility of the blend which also governed the kinetics and morphology of phase separation. The molecular weight of PVME decreased more slowly in the blend as PS content increased. It was believed that the reaction between PVME radicals and PS resulted in less reactive PS radicals which retarded oxidation. The PS radicals eventually underwent chain scission reactions.  相似文献   

8.
The effect of simple shear flow on the phase behavior and morphology was investigated for both polystyrene/poly(vinyl methyl ether) (PS/PVME) and poly(methyl methacrylate)/poly(styrene‐co‐acrylonitrile) (PMMA /SAN‐29.5) blends, which have LCST (lower critical solution temperature)‐type phase diagram. The measurements were carried out using a special shear apparatus of two parallel glass plates type. The PS/PVME blends showed shear‐induced demixing and shear‐induced mixing at low and high shear rate values, respectively. In addition, the rotation speed and the sample thickness were found to have a pronounced effect on the phase behavior under shear flow. On the‐other hand, PMMA/SAN blend showed only shear‐induced mixing and the magnitudes of the elevation of the cloud points were found to be composition and molecular weight dependent. The morphology of the PMMA/SAN=75/25 blend indicated that shear‐induced mixing occurred at a critical shear rate value, below which the two phases were highly oriented and elongated in the flow direction.  相似文献   

9.
A combination of optical and atomic force microscopy (AFM) is used for probing changes in the morphology of polymer blend films that accompany phase ordering processes (phase separation and crystallization). The phase separation morphology of a “model” semi‐crystalline (polyethyleneoxide or PEO) and amorphous (polymethylmethacrylate or PMMA) polymer blend film is compared to previous observations on binary amorphous polymer blend films of polystyrene (PS) and polyvinylmethylether (PVME). The phase separation patterns are found to be similar except that crystallization of the film at high PEO concentrations obscures the observation of phase separation. The influence of film defects (e.g., scratches) and clay filler particles on the structure of the semi‐crystalline and amorphous polymer films is also investigated.  相似文献   

10.
In this study, a highly toughened PLA was prepared through physical melt-blending with EVA at the presence of hydrophilic nanosilica and SEBS-g-MA block copolymer compatibilizer. The effect of nanosilica and compatibilizer on the morphology, mechanical properties, and linear rheology of the PLA/EVA blends was also investigated. According to TEM images, nanosilica was selectively located in the PLA matrix while some were placed on the interface between the two polymers as was also predicted by thermodynamic and kinetic analysis. Upon the addition of nanoparticles, the interfacial adhesion between the phases was enhanced and the average droplet size decreased. Interestingly, incorporation of SEBS-g-MA induced morphological changes as the spherical EVA droplets turned into a cylindrical shape. DSC results indicated that blending with EVA copolymer resulted in the reduction of crystallization of PLA matrix; however, the crystallinity increased at the presence of nanoparticles up to 5 wt%. The addition of compatibilizer considerably hindered the crystallization of the PLA phase. PLA/EVA blend containing optimum levels of nanosilica exhibited considerably enhanced tensile toughness, elongation at break, and impact strength. On the other hand, the simultaneous addition of nanoparticles and SEBS-g-MA led to synergistic toughening effects and the compatibilized blend containing nanosilica exhibited excellent impact toughness. For instance, the elongation at break of the compatibilized PLA/EVA blend containing the optimal content of nanosilica was increased from 7% to 121% (compared to neat sample). The notched Izod impact strength was also increased from 5.1 to 65 kJ/m2. Finally, the microstructure of the blends was assessed by rheological measurements.  相似文献   

11.
用粗粒化分子动力学(MD)模拟方法从分子层次研究两组分聚合物共混体系相分离过程中的动力学. 在相分离初期, 相区尺寸不随时间增加而变化; 在相分离中期, 相区尺寸与时间有很好的标度关系, 标度指数(α=1/3)符合Lifshiz-Slyozov提出的以扩散为主导的蒸发-凝聚机理的标度预测; 在相分离后期, 体系实现宏观相分离, 相区尺寸不再随时间改变而变化. 体积分数小的高分子链尺寸在相分离过程中先收缩再扩张, 在实现宏观相分离后, 高分子链尺寸又回到本体状态尺寸.  相似文献   

12.
Thermosensitive phase transition behavior of poly(vinyl methyl ether) (PVME) in an aqueous solution and the effect of inorganic ions on the coil-globule transition have been investigated by Fourier transform infrared (FT-IR) spectroscopy with attenuated total reflection (ATR) accessory. ATR-IR spectra of PVME aqueous solution indicate that in water-PVME-inorganic salts system, the phase separation temperature of PVME aqueous solution decreased with the increase of ion concentration and the increase of anion electronegativity. Meanwhile, two-dimensional infrared (2D-IR) measurements have been made to clarify the microcosmic conformational changes of PVME during the coil-globule transition. Results show that the conformation changes of main chains occur earlier than those of ether groups during heating. Furthermore, the 2D correlation spectroscopy of PVME aqueous solution during heating and the increase of concentration of potassium chloride have been studied. The features of 2D-IR spectra during heating did not change compared to the features of PVME aqueous solution during the increase of concentration of potassium chloride. This result implies that, although the addition of inorganic ions shifts the phase separation temperature, it does not alter the internal mechanism of the coil-globule transition of PVME.  相似文献   

13.
The effects of film thickness and composition ratio on the morphology evolution of polystyrene (PS)/poly(vinyl methyl ether) (PVME) blend thin films were investigated. Diverse morphology evolutions including droplet-matrix structure, hole emergence, bicontinuous structure formation, percolation-to-droplet transition could be observed under annealing in two-phase region, depending on film thickness and composition ratio. The mechanism for these morphology variations was related to the complex effects of phase separation, dewetting and preferential wetting. The comparison between the thickness of bottom PVME layer and the twice of gyration radius 2Rg(PVME) played a dominant role in morphology control. Only when the PS/PVME film had specific film thickness and compositional symmetry, phase separation and dewetting could happen in sequence.  相似文献   

14.
Phase separation in both thin and thick films of polystyrene (PS) and poly(vinyl methyl ether) (PVME) was studied by small-angle laser light scattering (SALLS), atomic force microscopy (AFM), optical microscopy, and X-ray photoelectron spectroscopy (XPS). Blend films with controlled thickness were obtained by spin-coating polymer-toluene solutions with various concentrations. Films with thicknesses smaller and larger than the maximum wavelength of concentration fluctuations were considered. Morphology of the blend films was characterized during and after phase separation. The obtained peculiar morphology was related to surface enrichment with the lower-surface-energy component, as was verified by XPS analyses.  相似文献   

15.
Various phase behavior of blends of poly(vinyl ether)s with homologous acrylic polymers (polymethacrylates or polyacrylates) were examined using differential scanning calorimetry, optical microscopy (OM), and Fourier‐transformed infrared spectroscopy. Effects of varying the pendant groups of either of constituent polymers on the phase behavior of the blends were analyzed. A series of interestingly different phase behavior in the blends has been revealed in that as the pendant group in the acrylic polymer series gets longer, polymethacrylate/poly(vinyl methyl ether) (PVME) blends exhibit immiscibility, upper critical solution temperature (UCST), and miscibility, respectively. This study found that the true phase behavior of poly(propyl methacrylate)/PVME [and poly(isopropyl methacrylate)/PVME)] blend systems, though immiscible at ambient, actually displayed a rare UCST upon heating to higher temperatures. Similarly, as the methyl pendant group in PVE is lengthened to ethyl (i.e., PVME replaced by PVEE), phase behavior of its blends with series of polymethacrylates or polyacrylates changes correspondingly. Analyses and quantitative comparisons on four series of blends of PVE/acrylic polymer were performed to thoroughly understand the effects of pendant groups in either polyethers (PVE's) or acrylic polymers on the phase behavior of the blends of these two constituents. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1521–1534, 2007  相似文献   

16.
The thermosensitive phase separation of poly(vinyl methyl ether) (PVME) aqueous solutions has been investigated using near-infrared spectroscopy in combination with two-dimensional correlation analysis, and a two-step phase separation mechanism during gradual heating has been established. Two-dimensional near-infrared (2D NIR) analysis results indicate that during this two-step process the dehydration of CH 2 groups occurs earlier than that of CH 3 groups. This result suggests that it is the change of the hydrophobic hydrocarbon chain conformation induced by heating that indirectly leads to the dehydration of the hydrophilic ether oxygen side groups.  相似文献   

17.
It is suggested that the non-locality of the entropy part of the interaction parameter in partially miscible blends can be measured directly by scattering experiments. The structure factor computed in the random phase approximation is compared with experiments on weakly crosslinked polystyrene (PS) polyvinylmethylether (PVME) blends. These polymers have significantly different monomer units to form ‘smooth’ (PVME) and ‘rough’ (PS) polymers. An excess scattering is observed and related to the non-locality. It is further shown that these effects are significant near the glass transition of the blend. In particular, the influence of the non-local mixing entropy on the single chain behaviour close to the onset of the microphase separation is studied quantitatively.  相似文献   

18.
The FT–IR spectroscopic analysis and the thermal behavior of the blends of styrene-1-vinyl naphthalene copolymers [P(S-co-1VN)] and poly(vinyl methyl ether) (PVME) were investigated in this work. The copolymers containing 23, 50, and 80% by weight of styrene were synthesized by radical polymerization. The blend films of the P(S-co-1VN) and PVME were cast from the mixed solvent of benzene/trimethylbenzene [50/50 (v/v)]. It was found from the optical clarity and the glass transition temperature behavior that the blends of PVME with P(S-co-1VN) of 80 wt % styrene and 20 wt % 1-vinylnaphthalene (1VN) show miscibility below 50 wt % of the copolymer concentration and the concentration range to show miscibility becomes wider as the composition of 1VN decreases in the copolymers. From the FT–IR results, the relative peak intensity of the 1100 cm?1 region due to COCH3 bond of PVME and the peak position of 774 cm?1 region due to the naphthyl ring of 1VN were sensitive to the miscibility of the P(S-co-1VN)/PVME blends. The frequency differences of the phenyl ring and the naphthyl ring in the P(S-co-1VN) from each frequency in the P(S-co-1VN)/PVME blends increase with increasing composition of styrene in the copolymers and with increasing concentration of PVME in the blends. A threshold energy exists to induce molecular interaction between the naphthyl ring of 1VN and the COCH3 of PVME and to result in the miscible blends, regardless of the copolymer composition as well as the blend concentration. The threshold energy was estimated as about 3.689 × 10?21 cal (779 cm?1) for the P(S-co-1VN)/PVME blend system. It can be concluded that the miscibility in P(S-co-1VN)/PVME blends is largely affected by the composition of the copolymers, and the blends become more miscible as the composition of styrene in the copolymers increases.  相似文献   

19.
The dynamic-structural changes and polymer - solvent interactions during the thermotropic phase transition in poly(vinyl methyl ether) (PVME)/D2O solutions in a broad range of polymer concentrations (c = 0.1-60 wt.-%) were studied combining the measurements of 1H NMR spectra, spin-spin (T2) and spin-lattice (T1) relaxation times. Phase separation in solutions results in a marked line broadening of a major part of polymer segments, evidently due to the formation of compact globular-like structures. The minority (∼15%) mobile component, which does not participate in the phase separation, consists of low-molecular-weight fractions of PVME, as shown by GPC. Measurements of spin-spin relaxation times T2 of PVME methylene protons have shown that globular structures are more compact in dilute solutions in comparison with semidilute solutions where globules probably contain a certain amount of water. A certain portion of water molecules bound at elevated temperatures to (in) PVME globular structures in semidilute and concentrated solutions was revealed from measurements of spin-spin and spin-lattice relaxation times of residual HDO molecules.  相似文献   

20.
We apply broadband dielectric relaxation spectroscopy to probe the dynamics of hydrogen bonded polymer blends. A copolymer consisting of 2,3-dimethylbutadiene (DMB) [86%] and p-(hexafluoro-2-hydroxyl-2-propyl)styrene (HFS) [14%] was synthesized and blended with poly(vinylmethyl ether) (PVME). The copolymer is capable of forming strong intermolecular hydrogen bonds, while minimizing the degree of intramolecular associations, and its blends with PVME are predicted to be miscible over the entire composition range. Two segmental processes, α and α1, are present in blends containing 26, 50, and 76 weight percent copolymer. The slower process (α1) is assigned to the segmental motion of the intermolecularly associated copolymer, and the faster process (α) to segmental motions of PVME modified by the HFS:DMB copolymer. A relaxation associated with residual water is present in the glassy state. A local process due to motions of the PVME ether groups (β) is also present in the glassy state, and does not change with blend composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号