首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Rubber compounds are reinforced with fillers such as carbon black and silica. In general, filled rubber compounds shows smooth rheological behavior and mechanical properties. Variation in rheological behavior and mechanical properties was studied in terms of the filler composition using natural rubber compounds filled with both carbon black and silica CB/Si = 0/60, 20/40, 30/30, 40/20 and 60/0 phr (parts per hundred rubber is parts of any non-rubbery material per hundred parts of raw gum elastomer (rubbery material)). The rheological behaviour can be showed in measurement of Mooney viscosity and cure time. The Mooney viscosity of rubber compounds increase with the increasing the carbon black in the compounds. The compound filled with CB/Si of 30/30 and 60/0 showed abnormal rheological behaviour in which the cure time decreased suddenly and the increased at certain ratio during the measurement. The mechanical properties such as hardness, abrasion resistance and tensile stress at 300% elongation were studied. In the hardness and abrasion resistance measurement, the higher ratio CB/Si decrease contribution of silica, which resulting smaller of hardness value. Ratio CB/Si 40/20 gives an optimum filler blended. It is also clearly understood that higher abrasion resistance mainly due to the lower hardness value under the same condition. The tensile stress at 300% elongation of rubber compound increased with the increasing carbon black filler.  相似文献   

2.
As a widely used reinforcing filler of rubber, carbon black(CB) often enhances the nonlinear Payne effect and its mechanism still remains controversial. We adopt simultaneous measurement of rheological and electrical behaviors for styrene-butadiene rubber(SBR)/CB compounds and CB gel(CBG) during large deformation/recovery to investigate the contribution of conductive CB network evolution to the Payne effect of the compounds. In the highly filled compounds, the frequency dependence of their strain softening behavior is much more remarkable than that of their CB network breakdown during loading, while during unloading the unrecoverable filler network hardly affects the complete recovery of modulus, both revealing that their Payne effect should be dominated by the disentanglement of SBR matrix. Furthermore,the bound rubber adjacent to CB particles can accelerate the reconstruction of continuous CB network and improve the reversibility of Payne effect. This may provide new insights into the effect of filler network, bound rubber, and free rubber on the Payne effect of CB filled SBR compounds.  相似文献   

3.
徐贝  宋义虎  郑强 《高分子学报》2017,(11):1832-1840
采用亲水气相二氧化硅(FS)、非缠结聚乙二醇(PEG,重均分子量400)制备悬浮体系,考察FS体积分数(φ)对PEG本体相α-松弛、结晶行为及悬浮体系流变行为的影响.结果表明,FS可延缓PEG本体相α-松弛,提高玻璃化转变温度,并显著增加浮体系黏度,降低本体PEG相结晶与熔融焓.低填充时,FS起成核作用;高填充时,FS延迟PEG分子扩散,并降低结晶温度.FS对PEG结晶的不同作用发生在悬浮体系溶胶-凝胶转变附近,此时悬浮液非线性动态流变行为呈现显著的硬化软化特性,线性动态流变行为呈现最为显著的频率依赖性.通过建立线性动态流变行为叠加曲线,揭示了FS对PEG分子链扩散行为的显著推迟作用.  相似文献   

4.
Samples of carbon–oligomer filler prepared by ketonization of tire rubber crumb with dinitrogen monoxide were characterized. The effect of the oligomeric component of the filler on the kinetic parameters of cross-linking in model compounds was determined. A study of the main rheological and physicomechanical properties of elastomer compounds based on butadiene–α-methylstyrene rubber containing carbon–oligomer filler demonstrated the possibility of using it as a component of polyfunctional action.  相似文献   

5.
《先进技术聚合物》2018,29(6):1661-1669
Recently, carbon nanofibers have become an innovative reinforcing filler that has drawn increased attention from researchers. In this work, the reinforcement of acrylonitrile butadiene rubber (NBR) with carbon nanofibers (CNFs) was studied to determine the potential of carbon nanofibers as reinforcing filler in rubber technology. Furthermore, the performance of NBR compounds filled with carbon nanofibers was compared with the composites containing carbon black characterized by spherical particle type. Filler dispersion in elastomer matrix plays an essential role in polymer reinforcement, so we also analyzed the influence of dispersing agents on the performance of NBR composites. We applied several types of dispersing agents: anionic, cationic, nonionic, and ionic liquids. The fillers were characterized by dibutylphtalate absorption analysis, aggregate size, and rheological properties of filler suspensions. The vulcanization kinetics of rubber compounds, crosslink density, mechanical properties, hysteresis, and conductive properties of vulcanizates were also investigated. Moreover, scanning electron microscopy images were used to determine the filler dispersion in the elastomer matrix. The incorporation of the carbon nanofibers has a superior influence on the tensile strength of NBR compared with the samples containing carbon black. It was observed that addition of studied dispersing agents affected the performance of NBR/CNF and NBR/carbon black materials. Especially, the application of nonylphenyl poly(ethylene glycol) ether and 1‐butyl‐3‐methylimidazolium tetrafluoroborate contributed to enhanced mechanical properties and electrical conductivity of NBR/CNF composites.  相似文献   

6.
The main objective of the present study was to investigate the synergistic effect of simultaneous use of two reinforcing fillers in rubber compounds based on acrylonitrile-butadiene copolymer (NBR). Silica was used as reinforcing filler in all samples and the loading content was 25 phr. 3 and 5 phr of multiwall carbon nanotubes (MWCNT) were used as second reinforcing filler in NBR/silica compounds. Melt mixing method was employed for compound preparation. The effects of carbon nanotube/silica hybrid filler on mechanical and vulcanization characteristics of the rubber compounds were investigated. These results revealed that addition of the reinforcing filler, either carbon nanotube or silica, shortened the optimum cure time (t90) and also scorch time (ts1) of samples compared to that of pure NBR compound. In hybrid compounds, the reduction in optimum cure time and scorch time was higher than that of for silica-filled NBR or CNT-filled NBR compounds. This can be attributed to the synergistic effect between CNT and silica as two reinforcing agents in NBR compounds. Regardless the composition of the reinforcing filler, an increase of the relaxed storage modulus is observed, while the tan δ value is decreased steadily. The dynamic modulus reinforcement of nanocomposites was examined by the Guth Gold and Modified Guth Gold equations. For hybrid samples, the experimental values show a significant positive deviation from model predictions. According to the Barlow’s formula, hybrid compounds show higher burst strength compared to silica or CNT filled NBR compounds.  相似文献   

7.
The reinforcement and nonlinear viscoelastic behavior have been investigated for silica (SiO2) filled solution‐polymerized styrene butadiene rubber (SSBR). Experimental results reveal that the nonlinear viscoelastic behavior of the filled rubber is similar to that of unfilled SSBR, which is inconsistent with the general concept that this characteristic comes from the breakdown and reformation of the filler network. It is interesting that the curves of either dynamic storage modulus (G′) or loss tangent (tan δ) versus strain amplitude (γ) for the filled rubber can be superposed, respectively, on those for the unfilled one, suggesting that the primary mechanism for the Payne effect is mainly involved in the nature of the entanglement network in rubbery matrix. It is believed there exists a cooperation between the breakdown and reformation of the filler network and the molecular disentanglement, resulting in enhancing the Payne effect and improving the mechanical hysteresis at high strain amplitudes. Moreover, the vertical and the horizontal shift factors for constructing the master curves could be well understood on the basis of the reinforcement factor f(φ) and the strain amplification factor A(φ), respectively. The surface modification of SiO2 causes a decrease in f(φ), which is ascribed to weakeness of the filler–filler interaction and improvement of the filler dispersion. However, the surface nature of SiO2 hardly affects A(φ). © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2594‐2602, 2007  相似文献   

8.
ABSTRACT

Silica as one the most important fillers for rubber material is routinely modified by silane to improve its compatibility with the rubber matrix. Silanization of the silica particle affects both the linear and nonlinear rheological behaviors of the compounds. Their rheological nonlinearity, however, is mostly analyzed in an indirect way from linear rheological parameters, e.g. G′(ω1, γ0) and G″(ω1, γ0), which lose their physical meaning in the nonlinear viscoelastic regime. In the present work, the nonlinearity is directly quantified by the Fourier-transform rheology (FT-Rheology) technique in terms of I3/1(ω1, γ0), the third relative higher harmonic, for unvulcanized styrene butadiene rubber compounds filled with a fixed amount of silica, but varying dosages of silane. With the proposed model for I3/1(γ0), the contributions toward nonlinearity from the filler networks at a low strain amplitude and the one from the polymer networks at high strain amplitude can be successfully separated for filled systems. The utmost nonlinearity contribution from the filler networks decreases with the silane content, which is assigned to the weakening interparticle interaction of the filler. With increasing silanization of silica, the utmost nonlinearity contribution from the polymer networks is found to increase. This nonlinear mechanical response is attributed to the enhanced interfacial interaction between the filler and polymer.  相似文献   

9.
Montmorillonite exfoliated nanoclay was prepared by treating montmorillonite with an alkyalmmonium salt. It has been characterized by FT-IR spectroscopy and thermal analysis (TGA-DTA). The nanoclay composites, in which the rubber matrix was introduced by mixing solutions of the elastomer with the organically modified clay was then compounded with carbon black filler at 2.5, 5, 10, 15 phr loading level of nanoclay. The sulfur cured rubber samples were tested against a reference compound not filled with the nanoclay. Rheometrical and scorch measurements have shown that the nanoclay increases the curing speed and reduces the scorch safety. A very high reinforcement and stiffening effect due to the nanoclay was observed especially at 5 and 10 phr nanoclay filling level and especially at low extension modulus which can be increased up to 40% its original level than in the reference compound. An anisotropic behavior has been recorded in the stress-strain curve: for instance the 50% modulus was found >20% higher when measured parallel to the alignment of the exfoliated nanoclay lamellae in comparison to the modulus perpendicular to the lamellae orientation. The compounds with nanoclay show no adverse effects in tensile strength and in tear resistance, in De Mattia crack initiation and in abrasion resistance. Nanoclay reduces also the hysteresis and heat build up of the rubber compounds.  相似文献   

10.
Silica has long been recognized as a reinforcing filler, especially for light colored products. The degree of reinforcement is noticeably increased when silica is used in combination with silane coupling agent. Therefore, various types of silane coupling agents are now commercially available. In the present study, two types of silane coupling agents, e.g., bis-(3-triethoxysilylpropyl) tetrasulfane (Si-69) and 3-thiocyanatopropyl triethoxy silane (Si-264) were selected for comparison of their reinforcing efficiency in a conventional vulcanization (CV) system. The results reveal that the addition of silane coupling agent not only improves compound processability, but also enhances the mechanical properties of the rubber vulcanizates. Compared with Si-69, Si-264 gives rubber compounds with better processability due to its greater ability to promote filler dis-agglomeration during mixing. In addition, Si-264 also imparts a greater degree of reinforcement. This might be attributed to the combined effects of better rubber–filler interaction, better filler dispersion and higher state of cure which are obtained when Si-69 is replaced with Si-264. The dynamic properties of the rubber vulcanizates are also improved with the presence of silane coupling agent. In this aspect, Si-69 performs better than Si-264 as it provides rubber vulcanizates with lower heat build-up.  相似文献   

11.
By employing an idealized model of a polymer network and filler, we have investigated the stress-strain behavior by tuning the filler loading and polymer-filler interaction in a broad range. The simulated results indicate that there actually exists an optimal filler volume fraction (between 23% and 32%) for elastomer reinforcement with attractive polymer-filler interaction. To realize this reinforcement, the rubber-filler interaction should be slightly stronger than the rubber-rubber interaction, while excessive chemical couplings are harmful to mechanical properties. Meanwhile, our simulated results qualitatively reproduce the experimental data of Bokobza. By introducing enough chemical coupling between the rubber and the filler, an upturn in the modulus at large deformation is observed in the Mooney-Rivlin plot, attributed to the limited chain extensibility at large deformation. Particularly, the filler dispersion state in the polymer networks is also characterized in detail. It is the first demonstration via simulation that the reinforcement mechanism stems from the nanoparticle-induced chain alignment and orientation, as well as the limited extensibility of chain bridges formed between neighboring nanoparticles at large deformation. The former is influenced by the filler amount, filler size and filler-rubber interaction, and the latter becomes more obvious by strengthening the physical and chemical interactions between the rubber and the filler. Remarkably, the reason for no obvious reinforcing effect in filled glassy or semi-crystalline matrices is also demonstrated. It is expected that this preliminary study of nanoparticle-induced mechanical reinforcement will provide a solid basis for further insightful investigation of polymer reinforcement.  相似文献   

12.
The reinforcement of rubbers by nanoparticles is always accompanied with enhanced dissipation of mechanical energy upon large deformations. Methods for solving the contradiction between improving reinforcement and reducing energy dissipation for rubber nanocomposites have not been well developed. Herein carbon black(CB) filled isoprene rubber(IR)/liquid isoprene rubber(LR) blend nanocomposites with similar crosslink density(ν_e) are prepared and influence of LR on the strain softening behaviors including Payne effect under large amplitude shear deformation and Mullins effect under cyclic uniaxial deformation is investigated. The introduction of LR could improve the frequency sensitivity of loss modulus and reduce critical strain amplitude for Payne effect and loss modulus at the low amplitudes.Meanwhile, tuning ν_e and LR content allows reducing mechanical hysteresis in Mullins effect without significant impact on the mechanical performances. The investigation is illuminating for manufacturing nanocomposite vulcanizates with balanced mechanical hysteresis and reinforcement effect.  相似文献   

13.
Acrylonitrile butadiene rubber (NBR) compounds filled with different concentrations of graphite nanoplatelets were experimentally investigated. The stress–strain curves of the nanocomposites were studied, which suggest good filler–matrix adhesion. The large reinforcement effect of the filler followed the Guth model for non‐spherical particles. The effect of graphite nanoplatelets on the cyclic fatigue and hysteresis was also examined. The loading and unloading stress–strain relationships for any cycle were described by applying Ogden's model for rubber nanocomposites. With this model for incompressible materials, expressions may be developed to predict the stress–strain relationship for any given cycle. The dissipated energy increased with graphite nanoplatelets concentrations and decrease with number of cycles. The rate of damage accumulation becomes marginal after first ten cycles. The rate of damage increases as the amount of graphite nanoplatelets increase into the rubber matrix. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Skutterudites CoSb(3) with multiple cofillers Ba, La, and Yb were synthesized and very high thermoelectric figure of merit ZT = 1.7 at 850 K was realized. X-ray diffraction of the densified multiple-filled bulk samples reveals all samples are phase pure. High-resolution scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDS) analysis confirm that multiple guest fillers occupy the nanoscale-cages in the skutterudites. The fillers are further shown to be uniformly distributed and the Co-Sb skutterudite framework is virtually unperturbed from atomic scale to a few micrometers. Our results firmly show that high power factors can be realized by adjusting the total filling fraction of fillers with different charge states to reach the optimum carrier density, at the same time, lattice thermal conductivity can also be significantly reduced, to values near the glass limit of these materials, through combining filler species of different rattling frequencies to achieve broad-frequency phonon scattering. Therefore, partially filled skutterudites with multiple fillers of different chemical nature render unique structural characteristics for optimizing electrical and thermal transports in a relatively independent way, leading to continually enhanced ZT values from single- to double-, and finally to multiple-filled skutterudites. The idea of combining multiple fillers with different charge states and rattling frequencies for performance optimization is also expected to be valid for other caged TE compounds.  相似文献   

15.
The rheological properties of styrene–butadiene rubber (SBR) loaded with dual phase filler were measured using Monsanto Processability Tester (MPT) at three different temperatures (100°C, 110°C and 130°C) and four different shear rates (61.3, 306.3, 613, and 1004.5 s−1). The effect of electron beam modification of dual phase filler in absence and presence of trimethylol propane triacrylate (TMPTA) or triethoxysilylpropyltetrasulphide (Si-69) on melt flow properties of SBR was also studied. The viscosity of all the systems decreases with shear rate indicating their pseudoplastic or shear thinning nature. The higher shear viscosity for the SBR loaded with the electron beam modified filler is explained in terms of variation in structure of the filler upon electron beam irradiation. Die swell of the modified filler loaded SBR is slightly higher than that of the unmodified filler loaded rubber, which is explained by calculating normal stress difference for the systems. Activation energy of the modified filler loaded SBR systems is also slightly higher than that of the control filler loaded SBR system.  相似文献   

16.
The mechanical and rheological behavior of dynamically vulcanized PP/EPDM blends is examined and compared with those of unvulcanized blends. The effect of blend ratio and dynamic vulcanization of EPDM rubber on tensile properties and flow are investigated. The mechanical properties of the blends are strongly influenced by the blend ratio. With the increasing of EPDM content the value of yield stress in a solid state decreases with the elastomer volume fractions less than 0.45 for the unvulcanized blends. For the dynamically vulcanized blends the interval of EPDM content, at which the yield peak is seen, is rather limited below 0.25 elastomer volume fractions. It is shown that dynamic vulcanization changes the deformational behavior of PP/EPDM blends. The rheological properties of dynamically vulcanized blends depending on the ratio of the components may be similar to the properties of polymer composites containing the highly disperse structuring filler. The distinction between the rheological behavior of unvulcanized and dynamically vulcanized blends is related to differences of their structures and viscoelastic characteristics of unvulcanized and vulcanized EPDM phase.  相似文献   

17.
The network formed by fillers has great influence on the mechanical properties of rubber materials. To understand the formation of network by carbon black,silica,and carbon black/silica mixing fillers in rubber and its influence on the properties of rubber,isoprene rubber/filler composites with different filler loadings are prepared and their micromorphology,rheological and tensile properties are investigated. It is found that the dispersion of fillers is better in rubber after cure than that in rubber before cure for all three rubber systems,and the filler size of silica is smaller than that of carbon black,but the aggregation is more severe in silica filled rubber system. In mixed filler system,the two fillers tend to aggregate separately, leading to the low modulus at small strain than that in single filler system. With the increase of the filler loading,the tensile strength increases first and then decreases,the elongation at break decreases,and the temperature rise in compression flexometer tests increases. Moreover,the temperature rise in mixed filler system is higher than that in single filler system at high filler loading. © 2022, Science Press (China). All rights reserved.  相似文献   

18.
The latex blending method was chosen to prepare Kaolinite/emulsion-polymerization styrene butadiene rubber (ESBR) nanocomposite to improve the interaction between filler particles and rubber matrix chains. The influences of kaolinite particles size, filler contents, and flocculants types on dynamic mechanical properties and the relative reinforcement mechanism of the prepared composite were systematic investigated and proposed. The transmission electron microscopy (TEM) and scanning electron microscopy (SEM) showed that the kaolinite particles were finely dispersed into the rubber matrix and arranged in parallel orientation. The prepared nanocomposites by latex blending exhibited improved crosslinking characteristic and dynamic mechanical parameters. The KAl (SO4)2 flocculant presented obvious modification in dynamic properties and crosslinking characteristic. Both the decrease in kaolinite particle size and the increase in kaolinite content can greatly improve the storage modulus and reinforcing effect of kaolinite/ESBR nanocomposites. The dynamic reinforcement mechanism of kaolinite can be explained by filler network including a certain thickness of rubber shell on the surface of kaolinite lamellar structure and the aggregations network between kaolinite particles The optimum way to balance the dynamic properties of rubber nanocomposites at different temperatures is to reduce the surface difference between kaolinite and rubber matrix and the degree of filler-filler networking on the basis of kaolinite with nanoscale (nanometer effect).  相似文献   

19.
《European Polymer Journal》2013,49(10):3199-3209
An in-rubber study of the interaction of silica with proteins present in natural rubber show that the latter compete with the silane coupling agent during the silanisation reaction; the presence of proteins makes the silane less efficient for improving dispersion and filler–polymer coupling, and thus influences the final properties of the rubber negatively. Furthermore, the protein content influences the rheological properties as well as filler–filler and filler–polymer interactions. Stress strain properties also vary with protein content, as do dynamic properties. With high amounts of proteins present in natural rubber, the interactions between proteins and silica are able to disrupt the silica–silica network and improve silica dispersion. High amounts of proteins reduce the thermal sensitivity of the filler–polymer network formation. The effect of proteins is most pronounced when no silane is used, but they are not able to replace a coupling agent.  相似文献   

20.
The properties of filled polymers depend on the properties of the matrix and the filler, the concentration of the components and their interactions. In this research we investigated the rheological and mechanical properties and thermal stability of polychloroprene/chlorosulfonated polyethylene (CR/CSM) rubber blends filled with nano- and micro-silica particles. The density of the nano-silica filled CR/CSM rubber blends was lower than that of the micro-silica filled samples but the tensile strength and elongation at break were much higher. The nano-silica filled CR/CSM rubber blend has higher V r0/V rf values than micro-silica composites and show better polymer–filler interaction according to Kraus equation. The nano-silica filled CR/CSM rubber blends were transparent at all filler concentration, and have higher glass transition values than micro-silica filled compounds. The higher values of the glass transition temperatures for the nano- than the micro-filled cross-linked systems are indicated by DMA analysis. The nano-filled cross-linked systems have a larger number of SiO–C links than micro-filled cross-linked systems and hence increased stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号