首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The polypropylene-graft-polyisoprene (PP-g-PIP) copolymers with different side chain length were synthesized by the combination of solid phase graft and anionic polymerization. The copolymers were characterized by nuclear magnetic resonance spectrum (1H-NMR), gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). Five PP/PP-g-PIP blends with PP-g-PIP as a flexibilizer to toughen PP were prepared and characterized by scanning electron microscope (SEM), dynamic mechanical analysis (DMA), DSC, wide-angle X-ray diffraction (WAXD). Their morphologies, glass transition temperatures, crystallinity and mechanical properties were investigated. All the results pointed out that the covalent bonding of PP and PIP increased the compatibility and interfacial adhesion, which led to PIP well dispersed in the system and small size PIP particles in the binary blends. In addition, the toughness of PP was improved while its tensile strength slightly decreased.  相似文献   

2.
Structure and properties of presumed polypropylene(PP)-b-polyethylene(PE) block copolymers (PPPE) and the corresponding blends (PP/PE) have been investigated by wide-angle x-ray scattering (WAXS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), torsional pendulum apparatus, and other techniques measuring mechanical properties. Crystallinity, morphological structure, and mechanical properties of the block copolymers and blends vary with the PP and PE compositions. Compared with PP homopolymers and PP/PE blends, PP and PE segments in PP-PE block copolymers have a reduced crystallinity, especially PE segments. An additional peak at about ?40°C is observed in dynamic relaxation spectra; substantially different morphology is revealed; and mechanical properties are greatly improved for the sequentially copolymerized PP-PE block copolymers, indicating the existence of PP-PE block structure.  相似文献   

3.
A main-chain liquid crystalline ionomer(MLCI)containing sulfonic group was synthesized by an interfacial condensation reaction.The MLCI was blended with polybutylene terephthalate(PBT)and polypropylene...  相似文献   

4.
Blends of polypropylene (PP) and epoxidized natural rubber (ENR) were prepared by an in‐line electron induced reactive processing technique. The mixing was done in a Brabender mixing chamber coupled with an electron accelerator. The effect of sequence of electron treatment on the compatibilization of non‐polar PP and polar ENR was investigated in the presence of triallyl cyanurate (TAC). Finally, the resulting blends were characterized by different techniques, namely, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), tensile tests, and rheological studies. Generation of phase coupling and chemical compatibilization were observed from FTIR analysis. DMA studies showed enhanced high‐temperature modulus (above the glass transition temperature of both components) followed up by lowering in the tan δ peak. Rheological studies showed increase in modulus at low frequencies. Electron treatment and incorporation of rubber phase into PP showed significant effect on the degree of crystallinity of the blends, which was characterized by DSC study. The results obtained from FTIR, DMA, SEM, rheological studies, and tensile tests strongly affirmed that electron induced reactive processing of PP in presence of TAC before adding of ENR performed the best amongst all samples modified with electrons investigated in this study. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
The crystallization characteristics of polypropylene (PP) and low ethylene content PP copolymers with and without nucleating agents were studied by differential scanning calorimetry (DSC). PP and PP copolymers was blended with three different kinds of co[poly(butylene terephthalate-p-oxybenzoate)] copolyesters, designated B28, B46, and B64, with the copolyester level varying from 5 to 15 wt.%. All samples were prepared by solution blending in hot xylene solvent at 50 °C. The crystallization behavior of samples was then studied by DSC. The results indicate that these three copolyesters accelerate the crystallization rate of PP and PP copolymers in a manner similar to that of a nucleating agent. The acceleration of crystallization rate was most pronounced in these blend systems with a maximum level at 5 wt.% of B28. The observed changes in crystallization behavior are explained by the effect of the composition and the amount of copolyester in the blends.  相似文献   

6.
The mechanical properties and the crystal morphological structures of the dynamically photocrosslinked polypropylene (PP)/ethylene-propylene-diene terpolymer (EPDM) blends have been studied by means of mechanical tests, wide-angle X-ray diffraction(WAXD), and differential scanning calorimetry(DSC). The dynamically photocrosslinking of the PP/EPDM blends can improve the mechanical properties considerably, especially the notched Izod impact strength at low temperatures. The data obtained from the mechanical tests show that the notched Izod impact strength of the dynamically photocrosslinked sample with 30% EPDM at -20℃ is about six times that of the uncrosslinked sample with the same EPDM component. The results from the gel content, the results of WAXD, and the DSC measurements reveal the enhanced mechanism of the impact strength for the dynamically photocrosslinked PP/EPDM blends as follows: (1) There exists the crosslinking of the EPDM phase in the photocrosslinked PP/EPDM blends ; (2) The β-type crystal structureof PP is formed and the content of α-type crystal decreases with increasing the EPDM component; (3) The graft copolymer of PP-g-EPDM is formed at the interface between the PP and EPDM components. All the above changes of the crystal morphological structures are favorable for increasing the compatibility and enhancing the toughness of the PP/EPDM blends at low temperatures.  相似文献   

7.
用Ziegler-Natta(Z-N)催化剂MgCl2/TiCl4/BMF-AlEt3(BMF代表内给电子体9,9-二甲氧基甲基芴),采用分段聚合的方法制备了PP/EPR原位共混物,通过改变乙丙共聚的时间调节聚合物中乙烯的含量.使用核磁共振(13C-NMR)、凝胶渗透色谱(GPC)、示差扫描量热分析法(DSC)、动态力学分析(DMA)、扫描电子显微镜(SEM)和偏光显微镜(PLM)等研究了聚合物的结构和形态特征.研究发现,分段聚合制备的PP/EPR共混物是一种包括丙烯均聚物、乙丙无规和嵌段共聚物在内的多组分混合物.动态力学的结果显示混合物中聚丙烯与乙丙无规共聚物的玻璃化转变峰出现了内移现象,说明两者呈现部分相容性.扫描电镜的照片表明了聚丙烯基体与乙丙无规共聚物分散相之间的相界面模糊,两相之间的相容性较好.随着聚合物中乙烯含量的增加,分散相出现明显的塑性变形,同时,聚丙烯的结晶形态也发生明显的变化,球晶的尺寸逐渐变小,同时球晶变得不完善.  相似文献   

8.
The morphology and crystallization behavior of blends of polypropylene (PP) and an ethylene-based thermoplastic elastomer (TPO) were investigated by scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The SEM images showed a two-phase morphology for these blends. As TPO was partially crystalline, two distinct peaks were observed in both heating and cooling scans of DSC. The crystallization temperature of TPO in blends was higher than pure TPO. In contrast, the crystallization temperature of PP in blends was lower than pure PP. The crystallization behavior of blends was modeled by Avrami equation. It was observed that the presence of TPO accelerated the growth rate of crystals of PP in PP/TPO blends.  相似文献   

9.
Epoxy resin-based unsaturated poly(ester-amide) resins (UPEAs) were treated with acryloyl chloride to afford acrylated UPEAs resins (AUPEAs). Urethane-based acrylated poly(ester-amide)s prepared by reaction with diisocyanate were characterized by elemental analysis, by molecular weight determination (by vapour pressure osmometry), by IR spectral study, and by thermogravimetry. The curing of interacting blends was monitored by differential scanning calorimetry (DSC). On the basis of DSC data in-situ glass-reinforced composites were prepared from the resulting materials and their mechanical, electrical, and chemical properties were characterized. Unreinforced blends were characterized by thermogravimetry.  相似文献   

10.
张杰 《高分子科学》2016,34(2):164-173
The crystallization behavior, rheological behavior, mechanical properties and microstructures of injection molded isotactic polypropylene(i PP), polypropylene random copolymer(co-PP) and i PP/co-PP blends were investigated. Differential scanning calorimetry(DSC) and dynamic rheological analysis illustrated that i PP and co-PP were compatible in the blends and co-PP uniformly dispersed in the i PP phase. Polarizing optical microscope(POM) was adopted to observe the crystal size and morphology evolution. The results of mechanical properties and scanning electron microscopy(SEM) indicated that the crystal size of i PP in i PP/co-PP blends(10 wt% co-PP + 90 wt% i PP and 30 wt% co-PP + 70 wt% i PP) radically decreased after the incorporation of co-PP. During crystallization, the molecular chain segments of co-PP could penetrate i PP spherulites and form a network-like crystalline structure. The network-like crystal structure could effectively transmit stress and consume more energy to overcome intermolecular forces to resist stretching. In this way, the strength would improve to a certain degree. The impact fracture mechanism of i PP/co-PP blends is quasi ductile fracture by multiple crazes. Our work discovered that the blends containing 10 wt% and 30 wt% of co-PP exhibited prominent toughness and reinforcement.  相似文献   

11.
The structure and properties of presumed block copolymers of polypropylene (PP) with ethylene-propylene random copolymers (EPR), i.e., PP-EPR and PP-EPR-PP, have been investigated by viscometry, transmission electron microscopy, dynamic mechanical analysis, differential scanning calorimetry, gel permeation chromatography, wide-angle x-ray diffraction, and other techniques testing various mechanical properties. PP-EPR and PP-EPR-PP were synthesized using δ-TiCl3-Et2-AlCl as a catalyst system. The results indicate that the intrinisic viscosity of these polymers increases with each block-building step, whereas the intrinsic viscosity of those prepared by chain transfer reaction (strong chain-transfer reagent hydrogen was introduced between block-building steps during polymerization) hardly changes with the reaction time. Compared with PP/EPR blends, PP-EPR-PP block copolymers have lower PP and polyethylene crystallinity, and lower melting and crystallization temperatures of crystalline EPR. Two relaxation peaks of PP and EPR appear in the dynamic spectra of blends. They merge into a very broad relaxation peak with block sequence products of the same composition, indicating good compatibility between PP and EPR in the presence of block copolymers. Varying the PP and EPR content affects the crystallinity, density, and morphological structure of the products, which in turn affects the tensile strength and elongation at break. Because of their superior mechanical properties, sequential polymerization products containing PP-EPR and PP-EPR-PP block copolymers may have potential as compatibilizing agents for isotactic polypropylene and polyethylene blends or as potential heat-resistant thermoplastic elastomers.  相似文献   

12.
Blends of polypropylene (PP) and ethylene-octene copolymers (EOC) were investigated by transmission electron microscopy (TEM) and by differential scanning calorimetry (DSC). The EOC contained 28, 37, 40 or 52 wt% of octene. Only the 50/50 PP/EOC ratio was used for all blends. None of the blends was fully miscible, there was always two-phase morphology. TEM observation followed by image analysis by ImageJ software revealed that the largest particles were in blend containing EOC-28 and the smallest were in blend with EOC-52. The coarsening rate at 200 °C was evaluated by TEM. The glass transition temperature (Tg) shift indicated partial miscibility. Partial miscibility was then confirmed by direct observation of bright PP lamellae in EOC dark phase.  相似文献   

13.
Microwave-assisted chemical modification of lignin was achieved through esterification using maleic anhydride. Modified lignin (ML) was blended in different proportions up to 25 mass% with polypropylene (PP) using Brabender electronic Plasticorder at 190 °C. The structural and thermal properties of blends were investigated by thermogravometric analysis (TG), differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD) and scanning electron microscopy (SEM). TG analysis showed increased thermal stability of blends due to antioxidant property of ML, which opposed oxidative degradation of PP. DSC analysis indicted slight depression in a glass transition temperature and melting temperature of blends due to partial miscible blend behavior between PP and ML. All blends showed higher crystallization temperatures and continuously reducing percentage crystallinity with increasing ML proportion in the blends. WAXD analysis indicated that PP crystallized in β polymeric form in addition to α-form in the presence of ML. However, proportion of β-form did not show linear relation with increase in ML proportion, thus ML acts as β nucleating agent in the PP matrix. SEM analysis showed good dispersion/miscibility in PP matrix indicating modification in lignin is useful.  相似文献   

14.
A side-chain liquid crystalline ionomer(SLCI) was synthesized by grafting copolymerization of 4-(4-ethoxybenzoyloxy)-4′-allyloxybiphenyl and N-allyl-pyridium bromide on polymethylhydrosiloxane. The SLCI was blended with polypropylene(PP) and polybutylene terephthalate(PBT) by melt mixing. The thermal behavior, liquid crystalline properties, morphological structure, and mechanical properties of the blends were investigated by differential scanning calorimetry(DSC), polarizing optical microscopy(POM), scannin...  相似文献   

15.
利用DSC和偏光显微镜等手段研究了部分成核剂对聚丙烯均聚物(PP)、低乙烯含量聚丙烯共聚物及聚丙烯/聚乙烯(PP/PE)共混物结晶行为的影响,结果表明所用成核剂对PP和改性PP具有一定的普适性。聚丙烯共聚物中,由于链结构规整性变差,成核剂的作用显得特别突出,而PP/PE共混物中,由于成核剂向PE相迁移而使其对PP结晶的成核效率降低。  相似文献   

16.
A series of PET/R‐PP/PC blends was studied in a chemical modification involving reactive extrusion with a ricinyl‐2‐oxazoline maleinate. The interfacial reaction between blend components were studied by the differential scanning calorimetry (DSC) and the scanning electron microscopy (SEM). The static tensile and flexural properties, and impact resistance response of the blends were tested. The phase morphology of the blends was of interpenetrating network (IPN) type according to SEM results. The blends offer excellent mechanical properties and improved impact strength as an effect of chemical reactions on reactive extrusion, even if PET waste and low PC contents (below 20%) have been used.  相似文献   

17.
张琴  傅强 《高分子科学》2010,28(2):249-255
<正>The phase morphology and thermal behavior of various isotactic polypropylene(PP)/linear low density polyethylene(LLDPE) blends were investigated with aid of scanning electron microscopy(SEM) and differential scanning calorimetry(DSC),respectively.The effect of barrel(melt) temperature on the morphology,thermal behavior and the resultant mechanical properties of the injection molded bars was the research focus,and the influence of LLDPE composition was also taken into account.It was found that the mechanical properties,especially the tensile ductility and the impact strength,were greatly affected by the processing temperature.The samples obtained at low temperatures had the highest elongation at break and impact strength,while those molded at high temperatures had the poorest toughness.Two reasons were responsible for that:first,the phase size in the samples increased with the processing temperature;second, possible orientation existed in the samples obtained at low processing temperatures.  相似文献   

18.
添加型聚丙烯大分子表面改性剂PP-g-PEG的制备及其应用   总被引:3,自引:0,他引:3  
以马来酸酐为桥联剂,通过其与单端羟基聚乙二醇的反应,合成了大分子表面改性剂聚丙烯-聚乙二醇接枝共聚物,探索了反应条件对接枝反应的影响,用IR、NMR、TGA、DSC对接枝物的结构及性能进行研究,并通过共混研究了接枝物对聚丙烯的表面改性效果.结果表明,提高马来酸酐接枝聚丙烯或聚乙二醇的分子量,会阻碍接枝反应的进行,接枝率明显下降;接枝聚乙二醇降低了接枝物的结晶能力;聚丙烯-聚乙二醇接枝共聚物的热稳定性随着聚乙二醇的含量增加及侧链聚乙二醇长度的增加略有下降;聚丙烯-聚乙二醇接枝共聚物组分在共混物中具有明显的向外择优迁移特性,可以作为聚丙烯的添加型表面改性剂使用.  相似文献   

19.
Unsaturated bisamic acids were prepared by reaction between maleic anhydride and different aromatic diamines. Unsaturated poly(ester-amide) resin (UPEAs) was prepared by reaction of diglycidylether of bisphenol-A (DGEBA) with unsaturated bisamic acids. Acrylation of Unsaturated poly(ester-amide)s (UPEAs) was carried out to afford acrylated UPEAs resin (i.e., AUPEAs). Interacting blends of Acrylated unsaturated poly(ester-amide)s (AUPEAs) with vinyl ester epoxy (VE) resin were prepared. APEAs and AUPEAs were characterized by elemental analysis, molecular weight determined by vapor pressure osmometer and by IR spectral study and by thermogravimetry. The curing of interacting blends was monitored on differential scanning calorimeter (DSC). Based on DSC data in situ glass reinforced composites of the resultant blends have been prepared and characterized for mechanical, electrical and chemical properties. Unreinforced blends were characterized thermo-gravimetrically (TGA).  相似文献   

20.
PTW对PA1010/PP共混物的增容作用   总被引:2,自引:0,他引:2  
为了增加聚酰胺1010/聚丙烯(PA1010/PP)共混物的相容性,提高共混物的力学性能,采用一种新型的反应型增容剂乙烯-丙烯酸丁酯-甲基丙烯酸缩水甘油酯共聚物(PTW)进行增容,通过扫描电镜(SEM)、力学性能、傅里叶变换红外光谱(FTIR)和差示扫描量热(DSC)测试,研究了PTW对PA1010/PP共混物的增容作用.结果表明,随着PTW的加入,共混物的相区尺寸明显变小,当PA1010/PP/PTW质量比为70∶30∶7时,分散相尺寸细小而均匀,表明PTW有较好的增容作用.FTIR结果表明,PTW上的环氧基团和PA1010在熔融共混中发生了化学反应.DSC研究结果表明,PA1010的结晶温度随PTW的加入而降低,说明PTW对PA1010结晶有抑制作用.另外,PTW的加入使PP的结晶温度下降,当PTW质量分数为5%时出现2个结晶峰,即出现异相成核结晶和均相成核结晶,PP均相成核结晶的出现从另一个方面说明,在PA1010基体中分散相PP尺寸非常细小.当PTW质量分数为7%时共混物的力学性能最佳,干态冲击强度达到13.93kJ/m2,是未加增容剂时的2倍,拉伸和弯曲性能基本不变.PTW的增容机理在于其分子链中的甲基丙烯酸缩水甘油酯能与PA1010发生化学反应,而乙烯链段与PP有较好的亲和性,从而降低界面张力,减少相区尺寸,大幅度提高力学性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号