首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The salt effects on the water solubility of thermoresponsive hyperbranched polyethylenimine and polyamidoamine possessing large amounts of isobutyramide terminal groups (HPEI-IBAm and HPAMAM-IBAm) were studied systematically. Eight anions with sodium as the counterion and ten cations with chloride as the counterion were used to measure the anion and cation effects on the cloud point temperature (T(cp)) of these dendritic polymers in water. It was found that the T(cp) of these dendritic polymers was much more sensitive to the addition of salts than that of the traditional thermoresponsive linear polymers. At low anion concentration, the electrostatic interaction between anions and the positively charged groups of these polymers was dominant, resulting in the unusual anion effect on the T(cp) of these polymers in water, including (1) T(cp) of these dendritic polymers decreasing nonlinearly with the increase of kosmotropic anion concentration; (2) the chaotropic anions showing abnormal salting-out property at low salt concentration and the stronger chaotropes having much pronounced salting-out ability; (3) anti-Hofmeister ordering at low salt concentration. At moderate to high salt concentration, the specific ranking of these anions in reducing the T(cp) of HPEI-IBAm and HPAMAM-IBAm polymers was PO(4)(3-) > CO(3)(2-) > SO(4)(2-) > S(2)O(3)(2-) > F(-) > Cl(-) > Br(-) > I(-), in accordance with the well-known Hofmeister series. At moderate to high salt concentration, the specific ranking order of inorganic cations in reducing the T(cp) of HPEI-IBAm polymer was Sr(2+) ≈ Ba(2+) > Na(+) ≈ K(+) ≈ Rb(+) > Cs(+) > NH(4)(+) ≈ Ca(2+) > Li(+) ≈ Mg(2+). This sequence was only partially similar to the typical Hofmeister cation series, whereas at low salt concentration the cation effect on T(cp) of the dendritic polymer was insignificant and no obvious specific ranking order could be found.  相似文献   

2.
The thermoresponsive behavior of an elastin‐based polymer can be altered by the polymeric macromolecular conformation. Thus, when the elastin basic amino acid sequence VPGVG is used as a pendant group of a poly(phenylacetylene) (PPA) its thermoresponsive behavior in water can be remotely detected through conformational changes on the formed helix. Circular dichroism at different temperatures shows an inversion of the first Cotton effect (450 nm) at 25.8 °C that matches with the cloud point temperature. The elastin‐based side‐chain poly(phenylacetylene) shows an upper critical solution temperature with low pH and concentration dependency, not expected in elastin‐based polymers. It was found that the polymer self‐assembles in water into spherical nanoparticles with hydrodynamic diameters of 140 nm at the hydrophobic state.  相似文献   

3.
With the combination of molecular scale information from electron paramagnetic resonance (EPR) spectroscopy and meso-/macroscopic information from various other characterization techniques, the formation of mesoglobules of thermoresponsive dendronized polymers is explained. Apparent differences in the EPR spectra in dependence of the heating rate, the chemical nature of the dendritic substructure of the polymer, and the concentration are interpreted to be caused by the formation of a dense polymeric layer at the periphery of the mesoglobule. This skin barrier is formed in a narrow temperature range of ~4 K above T(C) and prohibits the release of molecules that are incorporated in the polymer aggregate. In large mesoglobules, formed at low heating rates and at high polymer concentrations, a considerable amount of water is entrapped that microphase-separates from the collapsed polymer chains at high temperatures. This results in the aggregates possessing an aqueous core and a corona consisting of collapsed polymer chains. A fast heating rate, a low polymer concentration, and hydrophobic subunits in the dendritic polymer side chains make the entrapment of water less favorable and lead to a higher degree of vitrification. This may bear consequences for the design and use of thermoresponsive polymeric systems in the fast growing field of drug delivery.  相似文献   

4.
The chemical structure of end groups influenced the phase transition temperature of thermoresponsive polymers. We demonstrated a strategy for the preparation of the pH/thermo-responsive polymeric nanoparticles via subtle modification of end groups of thermoresponsive polymer segments with a carboxyl group and revealed its potential application for enhanced intracellular drug delivery. By developing a polymeric nanoparticle composed of poly(aliphatic ester) as the inner core and thermoresponsive polyphosphoester as the outer shell, we showed that end groups of thermoresponsive polyphosphoester segments modified by carboxyl groups exhibited a pH/thermo-responsive behavior due to the hydrophilic to hydrophobic transitions of the end groups in response to the pH. Moreover, by encapsulating doxorubicin into the hydrophobic core of such pH/thermo-responsive polymer nanoparticles, their intracellular delivery and cytotoxicity to wild-type and drug-resistant tumor cells were significantly enhanced through the phase-transition-dependent drug release that was triggered by endosomal/lysosomal pH. This novel strategy and the multi-responsive polymer nanoparticles achieved by the subtle chain-terminal modification of thermoresponsive polymers provide a smart platform for biomedical applications.  相似文献   

5.
New thermoresponsive polymers based on poly(N‐(N′‐alkylcarbamido)propyl methacrylamide) analogues were designed with increased hydrophobic content to facilitate temperature‐dependent chromatographic separations of peptides and proteins from aqueous mobile phases. These polymer solution exhibited a lower critical solution temperature (LCST) when the alkyl group is methyl, ethyl, isopropyl, propyl, butyl, and isobutyl. However, larger alkyl groups such as hexyl and phenyl were not soluble in aqueous solutions at any temperature. Phase transition temperatures were lower for larger alkyl groups and increased with decreasing polymer molecular weight and concentration in solution. LCST dependence on polymer molecular weight and concentration is more significant compared with well‐studied poly(N‐isopropylacrylamide) (PIPAAm). Partition coefficient (log P) values for N‐(N′‐butylcarbamide)propylmethacrylamide and N‐(N′‐isobutylcarbamide)propyl methacrylamide (iBuCPMA) monomers are larger than that for IPAAm monomer, suggesting higher hydrophobicity than IPAAm. Chromatographic evaluation of poly(N‐(N′‐isobutylcarbamide)propyl methacrylamide) (PiBuCPMA) grafted silica particles in aqueous separations revealed larger k′ values for peptides, insulin, insulin chain B, and angiotensin I than PIPAAm‐grafted silica beads. In particular, k′ values for insulin obtained from PiBuCPMA‐grafted silica separations were much larger than those from PIPAAm‐grafted surface separations, indicating that PiBuCPMA should be more hydrophobic than PIPAAm. These results support the introduction of alkylcarbamido groups to efficiently increase thermoresponsive polymer hydrophobicity of poly(N‐alkylacrylamides) and poly(N‐alkylmethacrylamides). Consequently, poly(N‐(N′‐alkylcarbamido)propyl methacrylamide) analogues such as PiBuCPMA and poly(N‐(N′‐alkylcarbamido)alkylmehacrylamide) are new thermoresponsive polymers with appropriate hydrophobic partitioning properties for protein and peptide separations in aqueous media, depending on selection of their alkyl groups. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5471–5482, 2008  相似文献   

6.
Thermoresponsive sol–gel transition polymers based on biodegradable poly(amino acid) were synthesized by the reaction of poly(succinimide) with dodecylamine and amino alcohols. The introduction of the hydrophobic amine into the thermoresponsive poly(amino acid)s induced the sol–gel transition in phosphate buffer saline. The effects of the side chain structure, molecular weight, concentration of the polymer, and the additives (inorganic salts and urea) in the solution on the thermoresponsive behaviors were systematically investigated. A relationship between the lowest critical solution temperature (LCST) in the dilute solution and the viscosity reduction of the concentrated solution upon heating was observed. The present poly(amino acid)s showing a thermoresponsive sol–gel transition in aqueous solutions possess immense potential as an injectable biodegradable hydrogel system for various biomedical applications. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
旋光性聚甲基丙烯酸三苯甲酯的合成   总被引:3,自引:2,他引:3  
<正> 旋光性聚甲基丙烯酸三苯甲酯(PTrMA,A)是一种新型旋光聚合物,其旋光性不是来自结构单元中的手性原子或基因,而是刚性的分子链呈长程单向螺旋构象,使分子链获得手征性的结果.自70年代末问世以来,在改进其合成方法和作为色谱固定相直接拆分手性化合物的应用方面受到人们注意,由于独特的结构,可以设想,如果将它带上特殊  相似文献   

8.
郭明雨  江明 《化学进展》2007,19(4):557-566
本文综述了基于环糊精包结络合作用的大分子自组装的研究进展,包括:(1) 线型、梳型、多臂星型或超支化聚合物与环糊精或其二聚体自组装形成多聚轮烷(分子项链)、多聚准轮烷、双多聚(准)轮烷、分子管、双分子管、超分子凝胶及其应用;(2)桥联环糊精与桥联客体分子自组装制备线型或超支化超分子聚合物;(3)温度、pH值、光及客体分子刺激响应智能体系; (4) 通过亲水性的环糊精线型均聚物与含金刚烷的疏水性聚合物之间的包结络合作用来制备高分子胶束及其空心球等。  相似文献   

9.
A series of water‐soluble thermoresponsive hyperbranched copoly(oligoethylene glycol)s were synthesized by copolymerization of di(ethylene glycol) methacrylate (DEG‐MA) and oligo(ethylene glycol) methacrylate (OEG‐MA, Mw = 475 g/mol), with ethylene glycol dimethacrylate (EGD‐MA) used as the crosslinker, via reversible addition fragmentation chain transfer polymerization. Polymers were characterized by size exclusion chromatography and nuclear magnetic resonance analyses. According to the monomer composition, that is, the ratio of OEG‐MA: DEG‐MA: EGD‐MA, the lower critical solution temperature (LCST) could be tuned from 25 °C to 90 °C. The thermoresponsive properties of these hyperbranched copolymers were studied carefully and compared with their linear analogs. It was found that molecular architecture influences thermoresponsive behavior, with a decrease of around 5–10 °C in the LCST of the hyperbranched polymers compared with the LCST of linear chains. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2783–2792, 2010  相似文献   

10.
陈皞  贾志峰  颜德岳 《高分子学报》2007,(11):1097-1101
由聚丙二醇二缩水甘油醚和甘油通过质子转移聚合(proton transfer polymerization)一步法制备了端羟基的温敏性超支化聚醚.聚合产物的分子量(Mn)在1.76×104~2.43×104之间,玻璃化转变温度(Tg)在-31.5~-26.7℃之间,热分解温度(Td)在367~376℃之间.通过控制聚丙二醇二缩水甘油醚和甘油的投料比,实现了对温敏性超支化聚醚最低临界溶解温度(LCST)的调节,LCST可控制在28.3~39.6℃之间.  相似文献   

11.
This study deals with the removal of chromium species from aqueous dilute solutions using thermoresponsive linear and hyperbranched copolymers based on PEG-methacrylates. The thermal stability of polymers was studied by thermogravimetric analysis and chemiluminescence emission, which evidenced a slightly enhanced stability for hyperbranched polymers respect to linear structures. Their LCST was successfully determined by TOPEM (temperature-modulated DSC), and similar values to those obtained by UV spectroscopy were obtained. The adsorption capacities for chromium hexavalent of the polymers have been investigated as function of LCST. The results showed highest retention capacity of Cr(VI) for all polymers above LCST. Hyperbranched polymers were more efficient than linear polymers, because of the structure of the polymers. Hyperbranched polymers when precipitate form a network with more nanocavities where the chromium can be adsorbed. The efficiency increased with ratio of OEGMA/DEGMA, reaching a maximum retention capacity value of 40 mg Cr(VI)/g polymer.  相似文献   

12.
Here we report the preparation of PEG‐based thermoresponsive hyperbranched polymers via a facile in situ reversible addition‐fragmentation chain transfer (RAFT) copolymerization using bis(thiobenzoyl) disulphide to form 2‐cyanoprop‐2‐yl dithiobenzoate in situ. This novel one‐pot in situ RAFT approach was studied firstly using methyl methacrylate (MMA) monomer, then was used to prepare thermoresponsive hyperbranched polymers by copolymerization of poly(ethylene glycol) methyl ether methacrylate (PEGMEMA, Mn = 475), poly(propylene glycol) methacrylate (PPGMA, Mn = 375) and up to 30 % of ethylene glycol dimethacrylate (EGDMA) as the branching agent. The resultant PEGMEMA‐PPGMA‐EGDMA copolymers from in situ RAFT were characterized by Gel Permeation Chromatography (GPC) and 1H‐NMR analysis. The results confirmed the copolymers with multiple methacrylate groups and hyperbranched structure as well as RAFT functional residues. These water‐soluble copolymers with tailored compositions demonstrated tuneable lower critical solution temperature (LCST) from 22 °C to 32 °C. The phase transition temperature can be further altered by post functionalization via aminolysis of RAFT agent residues in polymer chains. Moreover, it was demonstrated by rheological studies and particle size measurements that these copolymers can form either micro‐ or macro photocrosslinked gels at suitable concentrations due to the presence of multiple methacrylate groups. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3751–3761  相似文献   

13.
陈宇 《高分子科学》2016,34(5):585-593
The influence of sodium dodecyl sulfate(SDS) on the cloud point temperature(Tcp) of the aqueous solution of thermoresponsive hyperbranched polyethylenimine derivative HPEI-IBAm was studied systematically. When p H was below 8.5, HPEI-IBAm was positively-charged. Initially, the Tcp of HPEI-IBAm decreased significantly, followed by an obvious increase with the increase of SDS concentration. The lower the p H was, the higher the SDS concentration was required to achieve the minimum Tcp. When p H was above 8.5, HPEI-IBAm was neutral and raising the SDS concentration led to the gradual increase of Tcp. Compared to linear poly(N-isopropyl acrylamide)(PNIPAm), the Tcp of the current hyperbranched HPEI-IBAm was more sensitive to SDS. The thermoresponsive HPEI-IBAm/SDS complex was used as host to accommodate the non-polar pyrene in water. The lowest SDS concentration for effectively enhancing the solubility of pyrene in water was around 6.4 mmol·L~(-1). When HPEI-IBAm was present, the SDS concentration threshhold was decreased to about 0.31 mmol·L~(-1). Fluorescence technique with pyrene as the hydrophobic probe demonstrated that the SDS concentration of 7.2 mmol·L~(-1) was required to form the hydrophobic domain to accommodate pyrene guests without HPEI-IBAm, while only 0.2 mmol·L~(-1) of SDS was required in the presence of HPEI-IBAm.  相似文献   

14.
This article highlights the occurrence and nature of nanoscale inhomogeneities in thermoresponsive polymers and focuses on different experimental techniques for their observation and characterization. Such inhomogeneities can be regarded as nanoscopic domains of collapsed polymer segments (or of a small number of unimers), which provide a nonpolar, hydrophobic interior. Continuous wave (CW) electron paramagnetic resonance (EPR) spectroscopy on amphiphilic reporter molecules (spin probes) as an intrinsically local technique is particularly emphasized. In combination with different ensemble‐averaging methods, it provides a holistic understanding of the often inhomogeneous nanoscale processes during the temperature‐induced collapse of a thermoresponsive polymer.  相似文献   

15.
Temperature‐dependent polymers are intelligent materials. In this study, biocompatible and temperature‐dependent hyperbranched poly(glycidol)s (HPGs) were synthesized and characterized. HPGs were succinylated then modified with the oligo(ethylene glycol) monoethers (OEG) for example methoxy di(ethylene glycol), methoxy tri(ethylene glycol), methoxy tetra(ethylene glycol), ethoxy di(ethylene glycol), ethoxy tri(ethylene glycol), and methoxy poly(ethylene glycol)s at different ratios. These polymers exhibited phase transitions at a specific temperature (the cloud point), depending on the composition of OEG. By tuning the composition of OEG in the polymer, thermosensitive polymers with cloud point near body temperature were produced. Endothermic peaks of these polymers were observed in the vicinity of the cloud point. It is suggested that at temperatures below the cloud point the polymers formed hydrophobic shells and became more hydrophobic at temperatures above the cloud point. Because they exhibited no cytotoxicity, these temperature‐sensitive polymers are useful for biomedical applications. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4047–4054, 2010  相似文献   

16.
Optically active and inactive polycamphorates and polycamphoramides were prepared by polycondensation of d- and dl-camphoryl dichloride with 1,4-butanediol, bisphenol A, and piperazine. The higher melting and more crystalline properties of optically active stereoregular condensation polymers compared to inactive atactic forms appear consistent with results from optically active isotactic and inactive atactic addition polymers.  相似文献   

17.
A series of amphiphilic thermoresponsive copolymers was synthesized by group transfer polymerization. Seven copolymers were prepared based on the nonionic hydrophobic n‐butyl methacrylate (BuMA), the ionizable hydrophilic and thermoresponsive 2‐(dimethylamino)ethyl methacrylate (DMAEMA) and the nonionic hydrophilic poly(ethylene glycol)methyl methacrylate (PEGMA). In particular, one diblock copolymer and six tricomponent copolymers of different architectures and compositions, one random and five triblock copolymers, were synthesized. The polymers and their precursors were characterized in terms of their molecular weight and composition using gel permeation chromatography and proton nuclear magnetic resonance spectroscopy, respectively. Aqueous solutions of the polymers were studied by turbidimetry, hydrogen ion titration, and light scattering to determine their cloud points, pKas, and hydrodynamic diameters and investigate the effect of the polymers' composition and architecture. The thermoresponsive behavior of the copolymers was also studied. By increasing the temperature, all polymer solutions became more viscous, but only one polymer, the one with the highest content of the hydrophobic BuMA, formed a stable physical gel. Interestingly, the thermoresponsive behavior of these triblock copolymers was affected not only by the terpolymers' composition but also by the terpolymers' architecture. These findings can facilitate the design and engineering of injectable copolymers for tissue engineering that could enable the in situ formation of physical gels at body temperature. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 775–783, 2010  相似文献   

18.
We prepared well‐defined diblock copolymers of thermoresponsive poly(N‐isopropylacrylamide‐coN,N‐dimethylacrylamide) blocks and biodegradable poly(D ,L ‐lactide) blocks by combination of reversible addition‐fragmentation chain transfer radical (RAFT) polymerization and ring‐opening polymerization. α‐Hydroxyl, ω‐dithiobenzoate thermoresponsive polymers were synthesized by RAFT polymerization using hydroxyl RAFT agents. Biodegradable blocks were prepared by ring‐opening polymerization of D ,L ‐lactide initiated by α‐hydroxyl groups of thermoresponsive polymers, which inhibit the thermal decomposition of ω‐dithioester groups. Terminal dithiobenzoate (DTBz) groups of thermoresponsive blocks were easily reduced to thiol groups and reacted with maleimide (Mal). In aqueous media, diblock copolymer products formed surface‐functionalized thermoresponsive micelles. These polymeric micelles had a low critical micelle concentration of 22 μg/L. In thermoresponsive studies of the micelles, hydrophobic DTBz‐surface micelles demonstrated a significant shift in lower critical solution temperature (LCST) to a lower temperature of 30.7 °C than that for Mal‐surface micelles (40.0 °C). In addition, micellar LCST was controlled by changing bulk mixture ratios of respective heterogeneous end‐functional diblock copolymers. Micellar disruption at acidic condition (pH 5.0) was completed within 5 days due to hydrolytic degradation of PLA cores, regardless of showing a slow disruption rate at physiological condition. Furthermore, we successfully improved water‐solubility of hydrophobic drug, paclitaxel by incorporating into the micellar cores. © Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7127–7137, 2008  相似文献   

19.
A series of novel hyperbranched polyselenides and polytellurides with multiple catalytic sites at the branching units has been synthesized via the polycondensation of A2 + B3 monomers. The GPx‐like activities of these polymer mimics were assessed and it was found that the polytellurides showed higher GPx‐like activities than the corresponding polyselenides. Interestingly, the polymers with higher molecular weights and degree of branching (DB) showed higher GPx‐like activities than the analogous lower molecular weight polymer. The enhancement in the catalytical activity of the hyperbranched polymers with increasing molecular weight affirmed the importance of the incorporation of multiple catalytic groups in the macromolecule which increases the local concentration of catalytic sites.  相似文献   

20.
A series of organo‐soluble spherical gold nanoparticles (AuNPs) were prepared through the reduction of HAuCl4 by NaBH4 in the presence of amphiphilic hyperbranched polymers that had a hydrophilic hyperbranched polyethylenimine core and a hydrophobic shell formed by many palmitamide (C16) chains. For comparison, the corresponding linear polymeric analog derived from linear polyethylenimine was also used to prepare the organo‐soluble AuNPs. The obtained AuNPs were characterized by transmission electron microscopy. It was found that higher feed ratio of polymer to HAuCl4 and utilization of polymers with higher C16 density usually resulted in smaller AuNPs with relatively lower polydispersity. Except of the polymer having the pronounced low molecular weight, the molecular weight and the morphology of the amphiphilic polymers had almost no obvious effect on the size of the formed AuNPs. These organo‐soluble AuNPs could be used as efficient catalysts for the biphasic catalytic reduction of 4‐nitrophenol by NaBH4. Their apparent rate coefficients had correlation with the molecular weight of the used amphiphilic polymers, but were less relevant to the morphology of these polymers. These organo‐soluble AuNPs could be conveniently recovered and reused many times. The morphology of the capping polymers had obvious effect on the lifetime of the AuNPs catalysts in the catalytic reduction of 4‐nitrophenol. Except of the pronounced low molecular weight hyperbranched polymer, the other hyperbranched ones with relatively high molecular weight rendered the AuNPs to have bigger turnover number values than their linear analog. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号