首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Suppose that e2?|x|V ∈ ReLP(R3) for some p > 2 and for g ∈ R, H(g) = ? Δ + gV, H(g) = ?Δ + gV. The main result, Theorem 3, uses Puiseaux expansions of the eigenvalues and resonances of H(g) to study the behavior of eigenvalues λ(g) as they are absorbed by the continuous spectrum, that is λ(g) ↗6 0 as g ↘5 g0 > 0. We find a series expansion in powers of (g ? g0)12, λ(g) = ∑n = 2 an(g ? g0)n2 whose values for g < g0 correspond to resonances near the origin. These resonances can be viewed as the traces left by the just absorbed eigenvalues.  相似文献   

2.
A factorial set for the Gaussian integers is a set G = {g1, g2gn} of Gaussian integers such that G(z) = Πk(z ? gk)gk takes Gaussian integer values at Gaussian integers. We characterize factorial sets and give a lower bound for max∥z∥2=nπ ∥ G(z)∥. It is conjectured that there are infinitely many factorial sets. A Gaussian integer valued polynomial (GIP) is a polynomial with the title property. A bound similar to the above is given for maxz∥2=nG(z)∥ if G(z) is a GIP. There is a relation between factorial sets and testing for GIP's. We discuss this and close with some examples of factorial sets, and speculate on how to find more.  相似文献   

3.
The group ring R(G) of a group G over a coefficient ring R is well known and so is the L1 group algebra
l1(G)=gαgg:α∈C,∑|αg>|<∞
. We study in this note
l(R,G)=gαgg:αg∈R,g∈G,limαg=0
. where R is Zp(Qp) the ring (field) of p-adic integers (numbers) equipped with the p-adic valuation. Analogues of certain well known results for group rings and l1(G) are obtained for l(R,G).  相似文献   

4.
5.
Let L be a lattice over the integers of a quaternion algebra with center K which is a B-adic field. Then the unitary group U(L) equals its own commutator subgroup Ω(L) and is generated by the unitary transvections and quasitransvections contained in it. Let g be a tableau, U(g), U+(g), Ω(g), T(g) be the corresponding congruence subgroups of order g. Then U(g)U+(g) ? Xi = 1τZ2, and Ω(g) = T(g) (the subgroup generated by the unitary transvections and quasitransvections with order ≤ g). Let G be a subgroup of U(L) with o(G) = g, then G is normal in U(L) if and only if U(g) ? G ? T(g).  相似文献   

6.
This paper is a study of the distribution of eigenvalues of various classes of operators. In Section 1 we prove that the eigenvalues (λn(T)) of a p-absolutely summing operator, p ? 2, satisfy
n∈Nn(T)|p1pp(T).
This solves a problem of A. Pietsch. We give applications of this to integral operators in Lp-spaces, weakly singular operators, and matrix inequalities.In Section 2 we introduce the quasinormed ideal Π2(n), P = (p1, …, pn) and show that for TΠ2(n), 2 = (2, …, 2) ∈ Nn, the eigenvalues of T satisfy
i∈Ni(T)|2nn2n2(T).
More generally, we show that for TΠp(n), P = (p1, …, pn), pi ? 2, the eigenvalues are absolutely p-summable,
1p=i=1n1piandn∈Nn(T)|p1p?CpπnP(T).
We also consider the distribution of eigenvalues of p-nuclear operators on Lr-spaces.In Section 3 we prove the Banach space analog of the classical Weyl inequality, namely
n∈Nn(T)|p ? Cpn∈N αn(T)p
, 0 < p < ∞, where αn denotes the Kolmogoroff, Gelfand of approximation numbers of the operator T. This solves a problem of Markus-Macaev.Finally we prove that Hilbert space is (isomorphically) the only Banach space X with the property that nuclear operators on X have absolutely summable eigenvalues. Using this result we show that if the nuclear operators on X are of type l1 then X must be a Hilbert space.  相似文献   

7.
For any fixed 0 < π ? 2π, let D(π) be the family of all holomorphic functions in the unit disk Δ which satisfy (i)f(0) = 0 and (ii) lim infz → π¦f(z)¦ ? 1, for all π lying on some arc Af ? with arclength ¦Af¦ ? π. We show that for each 0 < ε < 1, there is a π0 > 0 such that for any f?D(π) with π < π0, the Bloch and Doob norm respectively satisfy
6f6B= supz?Δ |f′(z)| (1?|z|2) > 2(1 ? ε) log1+cos(p21?cos(p2?1
6f6D= supz?Δ |f′(z)| (1?|z|) > (1 ? ε) log11?cos(p2?1
These two estimates do not hold with ε = 0.  相似文献   

8.
In “The Slimmest Geometric Lattices” (Trans. Amer. Math. Soc.). Dowling and Wilson showed that if G is a combinatorial geometry of rank r(G) = n, and if X(G) = Σμ(0, x)λr ? r(x) = Σ (?1)r ? kWkλk is the characteristic polynomial of G, then
wk?rk+nr?1k
Thus γ(G) ? 2r ? 1 (n+2), where γ(G) = Σwk. In this paper we sharpen these lower bounds for connected geometries: If G is connected, r(G) ? 3, and n(G) ? 2 ((r, n) ≠ (4,3)), then
wi?ri + nri+1 for i>1; w1?r+nr2 ? 1;
|μ| ? (r? 1)n; and γ ? (2r ? 1 ? 1)(2n + 2). These bounds are all achieved for the parallel connection of an r-point circuit and an (n + 1)point line. If G is any series-parallel network, r(G) = r(G?) = 4, and n(G) = n(G?) = 3 then (w1(G))4t-G ? (w1(G?)) = (8, 20, 18, 7, 1). Further, if β is the Crapo invariant,
β(G)=dX(G)(1),
then β(G) ? max(1, n ? r + 2). This lower bound is achieved by the parallel connection of a line and a maximal size series-parallel network.  相似文献   

9.
An elementary proof is given of the author's transformation formula for the Lambert series Gp(x) = Σn?1 n?pxn(1?xn) relating Gp(e2πiτ) to Gp(e2πiAτ), where p > 1 is an odd integer and Aτ = (aτ + b)(cτ + d) is a general modular substitution. The method extends Sczech's argument for treating Dedekind's function log η(τ) = πiτ12 ? G1(e2πiτ), and uses Carlitz's formula expressing generalized Dedekind sums in terms of Eulerian functions.  相似文献   

10.
Let m and vt, 0 ? t ? 2π be measures on T = [0, 2π] with m smooth. Consider the direct integral H = ⊕L2(vt) dm(t) and the operator (L?)(t, λ) = e?iλ?(t, λ) ? 2e?iλtT ?(s, x) e(s, t) dvs(x) dm(s) on H, where e(s, t) = exp ∫stTdvλ(θ) dm(λ). Let μt be the measure defined by T?(x) dμt(x) = ∫0tT ?(x) dvs dm(s) for all continuous ?, and let ?t(z) = exp[?∫ (e + z)(e ? z)?1t(gq)]. Call {vt} regular iff for all t, ¦?t(e)¦ = ¦?(e for 1 a.e.  相似文献   

11.
Starting from a defining differential equation (??t) W(λ, t, u) = (λ(u ? t)p(t)) W(λ, t, u) of the kernel of an exponential operator Sλ(?, t) = ∫?∞ W(λ, t, u)?(u) du with normalization ∫?∞W(λ, t, u) du = 1, we determine Sλ for various p(t) including; for example, p(t) a quadratic polynomial, all the known exponential operators are recovered and some new ones are constructed. It is shown that all the exponential operators are approximation operators. Further approximation properties of these operators are discussed. For example, functions satisfying ∥ Sλ(?, t) ? ?(t)∥ = O(λ) are characterized. Several results of C. P. May are also improved.  相似文献   

12.
Let g = (g1,…,gr) ≥ 0 and h = (h1,…,hr) ≥ 0, g?, h?J, be two vectors of nonnegative integers and let λ ? J, λ ≥ 0, λ ≡ 0 mod d, where d denotes g.c.d. (g1,…,gr). Define
Δ(λ)=Δ(λg,h):=min?=1rx?h?:x??0,x?∈J,?=1?x?g?
It is shown in this paper that Λ(λ) is periodic in λ with constant jump. If i? {1,…,r} is such that
detgihig?h?? (?1,…r)
then
Δ(λ)+giΔ(λ)+hi
holds true for all sufficiently large λ, λ ≡ 0 mod d.  相似文献   

13.
For a symmetric space GK of compact type, the highest-weight vectors for representations of G occurring in L2(GK) become heavily concentrated near certain submanifolds of GK as the highest weight goes to infinity. This fact is applied to obtain estimates for the spectral measures of the operators = PλqPλ, where Pλ : L2(GK) → Vλ is an orthogonal projection onto a G-irreducible summand, and q: G/KR is a continuous function acting on L2(GK) by multiplication.  相似文献   

14.
We prove a Szegö-type theorem for some Schrödinger operators of the form H = ?1 + V with V smooth, positive and growing like V0¦x¦k, k > 0. Namely, let πλ be the orthogonal projection of L2 onto the space of the eigenfunctions of H with eigenvalue ?λ; let A be a 0th order self-adjoint pseudo-differential operator relative to Beals-Fefferman weights ?(x, ξ) = 1, Φ(x, ξ) = (1 + ¦ξ¦2 + V(x))12 and with total symbol a(x, ξ); and let fC(R). Then
limλ→∞1rankπλtrf(πλλ)=limλ→∞1vol(H(x, ξ)?λ)H?λf(a(x, ξ))dxdξ
(assuming one limit exists).  相似文献   

15.
The operator L?(t, λ) = e?iλ(t, λ) ? 2e?iλtT?(s, x) e(s, t) dvs(x) dm(s) acting on H=∝02πL2(vt), where m and vt, 0 ? t ? 2π are measures on [0, 2π] with m smooth and e(s, t) = exp[?∝tsTdvλ(θ) dm(λ)], satisfies rank(I ? LL1) = rank(I ? L1L) = 1. It is, therefore, unitarily equivalent to a scalar Sz.-Nagy-Foia? canonical model. The purpose of this paper is to determine the model explicitly and to give a formula for the unitary equivalence.  相似文献   

16.
Given a finite loopless graph G (resp. digraph D), let σ(G), ?(G) and ψ(D) denote the minimal cardinalities of a completely separating system of G, a separating system of G and a separating system of D, respectively. The main results of this paper are:
δ(G) = minmm?m/2??γ(G)and ?(G) = ?log2 γ(G)? where γ(G)
denotes the chromatic number of G. (ii) All the problems of determining σ(G), ?(G) and ψ(D) are NP-complete.  相似文献   

17.
Let π be a cuspidal representation of GLn(AQ) with non-vanishing cohomology and denote by L(π,s) its L-function. Under a certain local non-vanishing assumption, we prove the rationality of the values of L(π?χ,0) for characters χ, which are critical for π. Note that conjecturally any motivic L-function should coincide with an automorphic L-function on GLn; hence, our result corresponds to a conjecture of Deligne for motivic L-functions. To cite this article: J. Mahnkopf, C. R. Acad. Sci. Paris, Ser. I 338 (2004).  相似文献   

18.
Let Π(G) be the set of paths of a particular class Π from the initial to the terminal root of a two-rooted (possibly directed) graph G. We consider the family of D-weights defined by
D(G)=∑Π′εΠ1(G)(-1)|Π′|+1
where Πx(G) is the family of subsets of Π(G) which cover x(G), the vertex set or the edge (arc) set of G.A number of the common properties and interrelations of these weights are discussed. Some of the weights have been considered previously, [1, 2], in the context of percolation theory but here only combinatorial arguments are used.  相似文献   

19.
Let G be a group and g1,…, gt a set of generators. There are approximately (2t ? 1)n reduced words in g1,…, gt, of length ?n. Let \?ggn be the number of those which represent 1G. We show that γ = limn → ∞(\?ggn)1n exists. Clearly 1 ? γ ? 2t ? 1. η = (log γ)(log(2t ? 1)) is the cogrowth. 0 ? η ? 1. In fact η ∈ {0} ∪ (12, 1¦. The entropic dimension of G is shown to be 1 ? η. It is then proved that d(G) = 1 if and only if G is free on g1,…, gt and d(G) = 0 if and only if G is amenable.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号