首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Hadamard matrices of order 44 possessing automorphisms of order 7 are classified. The number of their equivalence classes is 384. The order of their full automorphism group is calculated. These Hadamard matrices yield 1683 nonisomorphic 3-(44,22,10) designs, 57932 nonisomorphic 2-(43,21,10) designs, and two inequivalent extremal binary self-dual doubly even codes of length 88 (one of them being new).  相似文献   

2.
Using a backtracking algorithm along with an essential change to the rows of representatives of known 13 710 027 equivalence classes of Hadamard matrices of order 32, we make an exhaustive computer search feasible and show that there are exactly 6662 inequivalent skew‐Hadamard matrices of order 32. Two skew‐Hadamard matrices are considered SH ‐equivalent if they are similar by a signed permutation matrix. We determine that there are precisely 7227 skew‐Hadamard matrices of order 32 up to SH ‐equivalence. This partly settles a problem posed by Kim and Solé. As a consequence, we provide the classification of association schemes of order 31.  相似文献   

3.
Recent work on integral equivalence of Hadamard matrices and block designs is generalized in two directions. We first determine the two greatest invariants under integral equivalence of the incidence matrix of a symmetric balanced incomplete block design. This enables us to write down all the invariants in the case wherekλ is square-fre. Some other results on the sequence of invariants are presented. Secondly we consider the existence of inequivalent Hadamard matrices under integral equivalence. We show that if there is a skew-Hadamard matrix of order 8m then there are two inequivalent Hadamard matrices of order 16m, that and there are precisely eleven inequivalent Hadamard matrices of order 32.  相似文献   

4.
We give two examples H1 and H2 of Hadamard matrices of order 28 with trivial automorphism groups and show that H1, H1T, H2 and H2T are non-equivalent to each other as Hadamard matrices.  相似文献   

5.
This article derives from first principles a definition of equivalence for higher‐dimensional Hadamard matrices and thereby a definition of the automorphism group for higher‐dimensional Hadamard matrices. Our procedure is quite general and could be applied to other kinds of designs for which there are no established definitions for equivalence or automorphism. Given a two‐dimensional Hadamard matrix H of order ν, there is a Product Construction which gives an order ν proper n‐dimensional Hadamard matrix P(n)(H). We apply our ideas to the matrices P(n)(H). We prove that there is a constant c > 1 such that any Hadamard matrix H of order ν > 2 gives rise via the Product Construction to cν inequivalent proper three‐dimensional Hadamard matrices of order ν. This corrects an erroneous assertion made in the literature that ”P(n)(H) is equivalent to “P(n)(H′) whenever H is equivalent to H′.” We also show how the automorphism group of P(n)(H) depends on the structure of the automorphism group of H. As an application of the above ideas, we determine the automorphism group of P(n)(Hk) when Hk is a Sylvester Hadamard matrix of order 2k. For ν = 4, we exhibit three distinct families of inequivalent Product Construction matrices P(n)(H) where H is equivalent to H2. These matrices each have large but non‐isomorphic automorphism groups. © 2008 Wiley Periodicals, Inc. J Combin Designs 16: 507–544, 2008  相似文献   

6.
In this paper we give a new series of Hadamard matrices of order 2 t . When the order is 16, Hadamard matrices obtained here belong to class II, class V or to class IV of Hall's classification [3]. By combining our matrices with the matrices belonging to class I, class II or class III obtained before, we can say that we have direct construction, namely without resorting to block designs, for all classes of Hadamard matrices of order 16.Furthermore we show that the maximal excess of Hadamard matrices of order 22t is 23t , which was proved by J. Hammer, R. Levingston and J. Seberry [4]. We believe that our matrices are inequivalent to the matrices used by the above authors. More generally, if there is an Hadamard matrix of order 4n 2 with the maximal excess 8n 3, then there exist more than one inequivalent Hadamard matrices of order 22t n 2 with the maximal excess 23t n 3 for anyt 2.  相似文献   

7.
In this paper, we investigate Hadamard matrices of order 2(p + 1) with an automorphism of odd prime order p. In particular, the classification of such Hadamard matrices for the cases p = 19 and 23 is given. Self‐dual codes related to such Hadamard matrices are also investigated. © 2003 Wiley Periodicals, Inc. J Combin Designs 11: 367–380, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jcd.10052  相似文献   

8.
We show that if four suitable matrices of order m exist then there are Hadamard matrices of order 28m, 36m, and 44m. In particular we show that Hadamard matrices of orders 14(q + 1), 18(q + 1), and 22(q + 1) exist when q is a prime power and q ≡ 1 (mod 4).Also we show that if n is the order of a conference matrix there is an Hadamard matrix of order 4mn.As a consequence there are Hadamard matrices of the following orders less than 4000: 476, 532, 836, 1036, 1012, 1100, 1148, 1276, 1364, 1372, 1476, 1672, 1836, 2024, 2052, 2156, 2212, 2380, 2484, 2508, 2548, 2716, 3036, 3476, 3892.All these orders seem to be new.  相似文献   

9.
Skew Hadamard designs (4n – 1, 2n – 1, n – 1) are associated to order 4n skew Hadamard matrices in the natural way. We study the codes spanned by their incidence matrices A and by I + A and show that they are self-dual after extension (resp. extension and augmentation) over fields of characteristic dividing n. Quadratic Residues codes are obtained in the case of the Paley matrix. Results on the p-rank of skew Hadamard designs are rederived in that way. Codes from skew Hadamard designs are classified. An optimal self-dual code over GF(5) is rediscovered in length 20. Six new inequivalent [56, 28, 16] self-dual codes over GF(7) are obtained from skew Hadamard matrices of order 56, improving the only known quadratic double circulant code of length 56 over GF(7).  相似文献   

10.
We present the full classification of Hadamard 2-(31,15,7), Hadamard 2-(35, 17,8) and Menon 2-(36,15,6) designs with automorphisms of odd prime order. We also give partial classifications of such designs with automorphisms of order 2. These classifications lead to related Hadamard matrices and self-dual codes. We found 76166 Hadamard matrices of order 32 and 38332 Hadamard matrices of order 36, arising from the classified designs. Remarkably, all constructed Hadamard matrices of order 36 are Hadamard equivalent to a regular Hadamard matrix. From our constructed designs, we obtained 37352 doubly-even [72,36,12] codes, which are the best known self-dual codes of this length until now.   相似文献   

11.
A classification of the doubles of the projective plane of order 4 with respect to the order of the automorphism group is presented and it is established that, up to isomorphism, there are 1 746 461 307 doubles. We start with the designs possessing non-trivial automorphisms. Since the designs with automorphisms of odd prime orders have been constructed previously, we are left with the construction of the designs with automorphisms of order 2. Moreover, we establish that a 2-(21,5,2) design cannot be reducible in two inequivalent ways. This makes it possible to calculate the number of designs with only the trivial automorphism, and consequently the number of all double designs. Most of the computer results are obtained by two different approaches and implementations.  相似文献   

12.
There are exactly 60 inequivalent Hadamard matrices of order 24. In this note, we give a classification of the self‐dual ??5‐codes of length 48 constructed from the Hadamard matrices of order 24. © 2004 Wiley Periodicals, Inc.  相似文献   

13.
All equivalence classes of Hadamard matrices of order at most 28 have been found by 1994. Order 32 is where a combinatorial explosion occurs on the number of Hadamard matrices. We find all equivalence classes of Hadamard matrices of order 32 which are of certain types. It turns out that there are exactly 13, 680, 757 Hadamard matrices of one type and 26, 369 such matrices of another type. Based on experience with the classification of Hadamard matrices of smaller order, it is expected that the number of the remaining two types of these matrices, relative to the total number of Hadamard matrices of order 32, to be insignificant. © 2009 Wiley Periodicals, Inc. J Combin Designs 18:328–336, 2010  相似文献   

14.
In this paper all cocyclic Hadamard matrices of order less than 40 are classified. That is, all such Hadamard matrices are explicitly constructed, up to Hadamard equivalence. This represents a significant extension and completion of work by de Launey and Ito. The theory of cocyclic development is discussed, and an algorithm for determining whether a given Hadamard matrix is cocyclic is described. Since all Hadamard matrices of order at most 28 have been classified, this algorithm suffices to classify cocyclic Hadamard matrices of order at most 28. Not even the total numbers of Hadamard matrices of orders 32 and 36 are known. Thus we use a different method to construct all cocyclic Hadamard matrices at these orders. A result of de Launey, Flannery and Horadam on the relationship between cocyclic Hadamard matrices and relative difference sets is used in the classification of cocyclic Hadamard matrices of orders 32 and 36. This is achieved through a complete enumeration and construction of (4t, 2, 4t, 2t)-relative difference sets in the groups of orders 64 and 72.  相似文献   

15.
We construct non-equivalent 476 Hadamard matrices with Hall sets of order 28 containing 13 matrices in [7] and [8]. In this paper only 20 matrices are listed. Other four examples are in [5].Dedicated to Professor Akira Hattori on his 60th birthday  相似文献   

16.
It is proved that, if the order of a splitting automorphism of odd period n ≥ 1003 of a free Burnside group B(m, n) is equal to a power of some prime, then the automorphism is inner. Thus, an affirmative answer is given to the question concerning the coincidence of the splitting automorphisms of the group B(m, n) with the inner automorphisms for all automorphisms of order p k (p is a prime). This question was posed in 1990 in “Kourovka Notebook” (see the 11th edition, Question 11.36.b).  相似文献   

17.
We investigate automorphism groups of 2-generated quasigroups, constructed in [6], and show that such quasigroups of odd order k ≥ 7 have only one nontrivial automorphism, whereas in the case of even order k ≥ 6 there are no nontrivial automorphisms.  相似文献   

18.
For a large class (including the Nagata automorphism) of wild automorphisms F of k[x, y, z] (where k is a field of characteristic zero), we prove that we can find a weight w such that there exists no tame automorphism with the same w-weight multidegree.  相似文献   

19.
For any k we construct k-parameter families of rational surface automorphisms with positive entropy. These are automorphisms of surfaces ${\mathcal{X}}$ , which are constructed from iterated blowups over the projective plane. In certain cases we are able to determine the exact automorphism group of ${\mathcal{X}}$ , as well as when two of these surfaces are inequivalent.  相似文献   

20.
All Hadamard 2-(63,31,15) designs invariant under the dihedral group of order 10 are constructed and classified up to isomorphism together with related Hadamard matrices of order 64. Affine 2-(64,16,5) designs can be obtained from Hadamard 2-(63,31,15) designs having line spreads by Rahilly’s construction [A. Rahilly, On the line structure of designs, Discrete Math. 92 (1991) 291-303]. The parameter set 2-(64,16,5) is one of two known sets when there exists several nonisomorphic designs with the same parameters and p-rank as the design obtained from the points and subspaces of a given dimension in affine geometry AG(n,pm) (p a prime). It is established that an affine 2-(64,16,5) design of 2-rank 16 that is associated with a Hadamard 2-(63,31,15) design invariant under the dihedral group of order 10 is either isomorphic to the classical design of the points and hyperplanes in AG(3,4), or is one of the two exceptional designs found by Harada, Lam and Tonchev [M. Harada, C. Lam, V.D. Tonchev, Symmetric (4, 4)-nets and generalized Hadamard matrices over groups of order 4, Designs Codes Cryptogr. 34 (2005) 71-87].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号