首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
An asteroidal triple is a stable set of three vertices such that each pair is connected by a path avoiding the neighborhood of the third vertex. Asteroidal triples play a central role in a classical characterization of interval graphs by Lekkerkerker and Boland. Their result says that a chordal graph is an interval graph if and only if it contains no asteroidal triple. In this paper, we prove an analogous theorem for directed path graphs which are the intersection graphs of directed paths in a directed tree. For this purpose, we introduce the notion of a strong path. Two non-adjacent vertices are linked by a strong path if either they have a common neighbor or they are the endpoints of two vertex-disjoint chordless paths satisfying certain conditions. A strong asteroidal triple is an asteroidal triple such that each pair is linked by a strong path. We prove that a chordal graph is a directed path graph if and only if it contains no strong asteroidal triple. We also introduce a related notion of asteroidal quadruple, and conjecture a characterization of rooted path graphs which are the intersection graphs of directed paths in a rooted tree.  相似文献   

2.
The Even Pair Lemma, proved by Meyniel, states that no minimal imperfect graph contains a pair of vertices such that all chordless paths joining them have even lengths. This Lemma has proved to be very useful in the theory of perfect graphs. The Odd Pair Conjecture, with ‘even’ replaced by ‘odd’, is the natural analogue of the Even Pair Lemma. We prove a partial result for this conjecture, namely: no minimal imperfect graph G contains a three-pair, i.e. two nonadjacent vertices u1, u2 such that all chordless paths of G joining u1 to u2 contain precisely three edges. As a by-product, we obtain short proofs of two previously known theorems: the first one is a well-known theorem of Meyniel (a graph is perfect if each of its odd cycles with at least five vertices contains at least two chords), the second one is a theorem of Olariu (a graph is perfect if it contains no odd antihole, no P5 and no extended claw as induced subgraphs).  相似文献   

3.
An asteroidal triple is a stable set of three vertices such that each pair is connected by a path avoiding the neighborhood of the third vertex. Asteroidal triples play a central role in a classical characterization of interval graphs by Lekkerkerker and Boland. Their result says that a chordal graph is an interval graph if and only if it does not contain an asteroidal triple. In this paper, we prove an analogous theorem for directed path graphs which are the intersection graphs of directed paths in a directed tree. For this purpose, we introduce the notion of a special connection. Two non‐adjacent vertices are linked by a special connection if either they have a common neighbor or they are the endpoints of two vertex‐disjoint chordless paths satisfying certain conditions. A special asteroidal triple is an asteroidal triple such that each pair is linked by a special connection. We prove that a chordal graph is a directed path graph if and only if it does not contain a special asteroidal triple. © 2010 Wiley Periodicals, Inc. J Graph Theory 68:103‐112, 2011  相似文献   

4.
We show that a graph is weakly triangulated, or weakly chordal, if and only if it can be generated by starting with a graph with no edges, and repeatedly adding an edge, so that the new edge is not the middle edge of any chordless path with four vertices. This is a corollary of results due to Sritharan and Spinrad, and Hayward, Hoång and Maffray, and a natural analog of a theorem due to Fulkerson and Gross, which states that a graph is triangulated, or chordal, if and only if it can be generated by starting with a graph with no vertices, and repeatedly adding a vertex, so that the new vertex is not the middle vertex of any chordless path with three vertices. Our result answers the question of whether there exists a composition scheme that generates exactly the class of weakly triangulated graphs. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
A graph is triangulated if it has no chordless cycle with four or more vertices. It follows that the complement of a triangulated graph cannot contain a chordless cycle with five or more vertices. We introduce a class of graphs (namely, weakly triangulated graphs) which includes both triangulated graphs and complements of triangulated graphs (we define a graph as weakly triangulated if neither it nor its complement contains a chordless cycle with five or more vertices). Our main result is a structural theorem which leads to a proof that weakly triangulated graphs are perfect.  相似文献   

6.
We investigate the conjecture that a graph is perfect if it admits a two-edge-coloring such that two edges receive different colors if they are the nonincident edges of a P4 (chordless path with four vertices). Partial results on this conjecture are given in this paper. © 1995 John Wiley & Sons, Inc.  相似文献   

7.
We present easily verifiable conditions, under which a graph G contains nonempty vertex-disjoint induced subgraphs G1, G2 such that G is perfect if and only if G1 and G2 are. This decomposition is defined in terms of the induced subgraphs of G that are isomorphic to the chordless path with four vertices.  相似文献   

8.
Hoàng and Tu [On the perfect orderability of unions of two graphs, J. Graph Theory 33 (2000) 32-43] conjectured that a weakly triangulated graph which does not contain a chordless path with six vertices is perfectly orderable. We present a counter example to this conjecture.  相似文献   

9.
Chvátal defined a graph G to be brittle if each induced subgraph F of G contains a vertex that is not a midpoint of any P4 or not an endpoint of any P4. Every brittle graph is perfectly orderable. In this paper, we prove that a graph is brittle whenever it is HHD-free (containing no chordless cycle with at least five vertices, no cycle on six vertices with a long chord, and no complement of the chordless path on five vertices). We also design an O(n4) algorithm to recognize HHD-free graphs, and also an O(n4) algorithm to construct a perfect order of an HHD-free graph. It follows from this result that an optimal coloring and a largest clique of an HHD-free graph can be found in O(n4) time.  相似文献   

10.
In this paper we prove that each convex 3-polytope contains a path on three vertices with restricted degrees which is one of the ten types. This result strengthens a theorem by Kotzig that each convex 3-polytope has an edge with the degree sum of its end vertices at most 13.  相似文献   

11.
An opposition graph is a graph whose edges can be acyclically oriented in such a way that every chordless path on four vertices has its extreme edges both pointing in or pointing out. A strict quasi-parity graph is a graphG such that every induced subgraphH ofG either is a clique or else contains a pair of vertices which are not endpoints of an odd (number of edges) chordless path ofH. The perfection of opposition graphs and strict quasi-parity graphs was established respectively by Olariu and Meyniel. We show here that opposition graphs are strict quasi-parity graphs.The second author acknowledges the support of the Air Force Office of Scientific Research under grant number AFOSR 0271 to Rutgers University.  相似文献   

12.
A pair of vertices of a graph is called an even pair if every chordless path between them has an even number of edges. A graph is minimally even pair free if it is not a clique, contains no even pair, but every proper induced subgraph either contains an even pair or is a clique. Hougardy (European J. Combin. 16 (1995) 17–21) conjectured that a minimally even pair free graph is either an odd cycle of length at least five, the complement of an even or odd cycle of length at least five, or the linegraph of a bipartite graph. A diamond is a graph obtained from a complete graph on four vertices by removing an edge. In this paper we verify Hougardy's conjecture for diamond-free graphs by adapting the characterization of perfect diamond-free graphs given by Fonlupt and Zemirline (Maghreb Math. Rev. 1 (1992) 167–202).  相似文献   

13.
 A graph is a strict-quasi parity (SQP) graph if every induced subgraph that is not a clique contains a pair of vertices with no odd chordless path between them (an “even pair”). We present an O(n 3) algorithm for recognizing planar strict quasi-parity graphs, based on Wen-Lian Hsu's decomposition of planar (perfect) graphs and on the (non-algorithmic) characterization of planar minimal non-SQP graphs given in [9]. Received: September 21, 1998 Final version received: May 9, 2000  相似文献   

14.
Let G be a graph with a perfect matching M. In this paper, we prove two theorems to characterize the graph G in which there is no M-alternating path between two vertices x and y in G.  相似文献   

15.
A graph istriangulated if it has no chordless cycle with at least four vertices (?k ≥ 4,C k ?G). These graphs Jhave been generalized by R. Hayward with theweakly triangulated graphs $(\forall k \geqslant 5,C_{k,} \bar C_k \nsubseteq G)$ . In this note we propose a new generalization of triangulated graphs. A graph G isslightly triangulated if it satisfies the two following conditions;
  1. G contains no chordless cycle with at least 5 vertices.
  2. For every induced subgraphH of G, there is a vertex inH the neighbourhood of which inH contains no chordless path of 4 vertices.
  相似文献   

16.
《Journal of Graph Theory》2018,87(1):108-129
A hole is a chordless cycle with at least four vertices. A pan is a graph that consists of a hole and a single vertex with precisely one neighbor on the hole. An even hole is a hole with an even number of vertices. We prove that a (pan, even hole)‐free graph can be decomposed by clique cutsets into essentially unit circular‐arc graphs. This structure theorem is the basis of our ‐time certifying algorithm for recognizing (pan, even hole)‐free graphs and for our ‐time algorithm to optimally color them. Using this structure theorem, we show that the tree‐width of a (pan, even hole)‐free graph is at most 1.5 times the clique number minus 1, and thus the chromatic number is at most 1.5 time the clique number.  相似文献   

17.
An even pair in a graph is a pair of vertices such that every chordless path between them has even length. A graph is called perfectly contractile when every induced subgraph can be transformed into a clique through a sequence of even-pair contractions. In this paper we characterize the planar graphs that are perfectly contractile by determining all the minimal forbidden subgraphs. We give a polynomial algorithm for the recognition of perfectly contractile planar graphs.  相似文献   

18.
A graph G is perfect if for every induced subgraph H of G the chromatic number χ(H) equals the largest number ω(H) of pairwise adjacent vertices in H. Berge's famous Strong Perfect Graph Conjecture asserts that a graph G is perfect if and only if neither G nor its complement G¯ contains an odd chordless cycle of length at least 5. Its resolution has eluded researchers for more than 20 years. We prove that the conjecture is true for a class of graphs that we describe by forbidden configurations.  相似文献   

19.
A graph G is traceable if there is a path passing through all the vertices of G. It is proved that every infinite traceable graph either contains arbitrarily large finite chordless paths, or contains a subgraph isomorphic to graph A, illustrated in the text. A corollary is that every finitely generated infinite lattice of length 3 contains arbitrarily large finite fences. It is also proved that every infinite traceable graph containing no chordless four-point path contains a subgraph isomorphic to Kω,ω. The versions of these results for finite graphs are discussed.  相似文献   

20.
A graph G is perfect in the sense of Berge if for every induced subgraph G′ of G, the chromatic number χ(G′) equals the largest number ω(G′) of pairwise adjacent vertices in G′. The Strong Perfect Graph Conjecture asserts that a graph G is perfect if, and only if, neither G nor its complement ? contains an odd chordless cycle of length at least five. We prove that the conjecture is true for a class of P5-free graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号