首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
In 1930 Kuratowski proved that a graph does not embed in the real plane R2 if and only if it contains a subgraph homeomorphic to one of two graphs, K5 or K33. Let In(P) denote the minimal set of graphs whose vertices have miximal valency n such that any graph which does not embed in the real projective plane (or equivalently, does not embed in the Möbius band) contains a subgraph homeomorphic to a graph in In(P) for some positive integer n. Glover and Huneke and Milgram proved that there are only 6 graphs in I3(P). This note proves that for each n, In(P) is finite.  相似文献   

2.
In 1930 Kuratowski proved that a graph does not embed in the real plane R2 if and only if it contains a subgraph homeomorphic to one of two graphs, K5 or K3, 3. For positive integer n, let In (P) denote a smallest set of graphs whose maximal valency is n and such that any graph which does not embed in the real projective plane contains a subgraph homeomorphic to a graph in In (P) for some n. Glover and Huneke and Milgram proved that there are only 6 graphs in I3 (P), and Glover and Huneke proved that In (P) is finite for all n. This note proves that In (P) is empty for all but a finite number of n. Hence there is a finite set of graphs for the projective plane analogous to Kuratowski's two graphs for the plane.  相似文献   

3.
For a prime p, we denote by Bn the cyclic group of order pn. Let φ be a faithful irreducible character of Bn, where p is an odd prime. We study the p-group G containing Bn such that the induced character φG is also irreducible. The purpose of this article is to determine the subgroup NG(NG(Bn)) of G under the hypothesis [NG(Bn):Bn]4 ≦ pn.  相似文献   

4.
Let σk(G) denote the minimum degree sum of k independent vertices in G and α(G) denote the number of the vertices of a maximum independent set of G. In this paper we prove that if G is a 4-connected graph of order n and σ5(G) 〉 n + 3σ(G) + 11, then G is Hamiltonian.  相似文献   

5.
Let γ(G) denote the domination number of a graph G and let CnG denote the cartesian product of Cn, the cycle of length n?3, and G. In this paper, we are mainly concerned with the question: which connected nontrivial graphs satisfy γ(CnG)=γ(Cn)γ(G)? We prove that this equality can only hold if n≡1 (mod 3). In addition, we characterize graphs which satisfy this equality when n=4 and provide infinite classes of graphs for general n≡1 (mod 3).  相似文献   

6.
Let π be a set of prime numbers andG a finite π-separable group. Let θ be an irreducible π′-partial character of a normal subgroupN ofG and denote by Iπ′ (G‖θ), the set of all irreducible π′-partial characters Φ ofG such that θ is a constituent of ΦN. In this paper, we obtain some information about the vertices of the elements in Iπ′ (G‖θ). As a consequence, we establish an analogue of Fong's theorem on defect groups of covering blocks, for the vertices of the simple modules (in characteristicsp) of a finitep-solvable group lying over a fixed simple module of a normal subgroup.  相似文献   

7.
If G is a graph that minimally does not embed in a nonorientable surface, then each edge of G is in a subdivision of either K3,3 or K5. However, there is an example of a graph that minimally does not embed in the torus and some edge is in no subdivision of either K3.3 or K5. © 1996 John Wiley & Sons, Inc.  相似文献   

8.
The cochromatic number of a graph G, denoted by z(G), is the minimum number of subsets into which the vertex set of G can be partitioned so that each subset induces an empty or a complete subgraph of G. In an earlier work, the author considered the problem of determining z(S), the maximum cochromatic number among all graphs that embed in a surface S. The value of z(S) was found for the sphere, the Klein bottle, and for the nonorientable surface of genus 4. In this note, some recent results of Albertson and Hutchinson are used to determine the cochromatic numbers of the projective plane and the nonorientable surface of genus 3. These results lend further evidence to support the conjecture that z(S) is equal to the maximum n for which the graph Gn = K1 U K2 U … U Kn embeds in S.  相似文献   

9.
For two given graphs G1 and G2, the Ramsey number R(G1,G2) is the smallest integer n such that for any graph G of order n, either G contains G1 or the complement of G contains G2. Let Cm denote a cycle of length m and Kn a complete graph of order n. In this paper, it is shown that R(C6,K8)=36.  相似文献   

10.
Let G be a graph and χl(G) denote the list chromatic number of G. In this paper we prove that for every graph G for which the length of each cycle is divisible by l (l≥3), χl(G)≤3.  相似文献   

11.
A sort sequenceS n is a sequence of all unordered pairs of indices inI n = 1, 2, ...,n. With a sort sequenceS n, we associate a sorting algorithmA(S n) to sort input setX = x 1, x2, ..., xn as follows. An execution of the algorithm performs pairwise comparisons of elements in the input setX as defined by the sort sequenceS n, except that the comparisons whose outcomes can be inferred from the outcomes of the previous comparisons are not performed. Let χ(S n) denote the average number of comparisons required by the algorithmA(S n assuming all input orderings are equally likely. Let χ*(n) and χ°(n) denote the minimum and maximum values, respectively, of χ(S n) over all sort sequencesS n. Exact determination of χ*(n), χO(n) and associated extremal sort sequences seems difficult. Here, we obtain bounds on χ*(n) and χO(n).  相似文献   

12.
A set S of vertices in a graph G is a dominating set of G if every vertex of V(G)?S is adjacent to some vertex in S. The minimum cardinality of a dominating set of G is the domination number of G, denoted as γ(G). Let Pn and Cn denote a path and a cycle, respectively, on n vertices. Let k1(F) and k2(F) denote the number of components of a graph F that are isomorphic to a graph in the family {P3,P4,P5,C5} and {P1,P2}, respectively. Let L be the set of vertices of G of degree more than 2, and let GL be the graph obtained from G by deleting the vertices in L and all edges incident with L. McCuaig and Shepherd [W. McCuaig, B. Shepherd, Domination in graphs with minimum degree two, J. Graph Theory 13 (1989) 749-762] showed that if G is a connected graph of order n≥8 with δ(G)≥2, then γ(G)≤2n/5, while Reed [B.A. Reed, Paths, stars and the number three, Combin. Probab. Comput. 5 (1996) 277-295] showed that if G is a graph of order n with δ(G)≥3, then γ(G)≤3n/8. As an application of Reed’s result, we show that if G is a graph of order n≥14 with δ(G)≥2, then .  相似文献   

13.
A subset S={s1,…,sk} of an Abelian group G is called an St-set of size k if all sums of t different elements in S are distinct. Let s(G) denote the cardinality of the largest S2-set in G. Let v(k) denote the order of the smallest Abelian group for which s(G)?k. In this article, bounds for s(G) are developed and v(k) is determined for k?15 by computing s(G) for Abelian groups of order up to 183 using exhaustive backtrack search with isomorph rejection.  相似文献   

14.
Let $G = C_{n_1 } \oplus \cdots \oplus C_{n_r }$ with 1 < n 1 | ?? | n r be a finite abelian group, d*(G) = n 1 +??+n r ?r, and let d(G) denote the maximal length of a zerosum free sequence over G. Then d(G) ?? d*(G), and the standing conjecture is that equality holds for G = C n r . We show that equality does not hold for C 2 ?? C 2n r , where n ?? 3 is odd and r ?? 4. This gives new information on the structure of extremal zero-sum free sequences over C 2n r .  相似文献   

15.
Primes dividing the degrees of the real characters   总被引:1,自引:0,他引:1  
Let G be a finite group and let Irr(G) denote the set of all complex irreducible characters of G. The Ito–Michler Theorem asserts that if a prime p does not divide the degree of any χ Irr(G) then a Sylow p-subgroup P of G is normal in G. We prove a real-valued version of this theorem, where instead of Irr(G) we only consider the subset Irrrv(G) consisting of all real-valued irreducible characters of G. We also prove that the character degree graph associated to Irrrv(G) has at most 3 connected components. Similar results for the set of real conjugacy classes of G have also been obtained. Part of this paper was done while the second author visited the Mathematics Department of the Università di Firenze. He would like to thank the Department for its hospitality. The authors are also grateful to F. Lübeck for helping them with some computer calculations. The research of the first author was partially supported by MIUR research program “Teoria dei gruppi ed applicazioni”. This research of the second author was partially supported by the Spanish Ministerio de Educación y Ciencia proyecto MTM2004-06067-C02-01. The third author gratefully acknowledges the support of the NSA and the NSF.  相似文献   

16.
The cochromatic number of a graph G, denoted by z(G), is the minimum number of subsets into which the vertex set of G can be partitioned so that each sbuset induces an empty or a complete subgraph of G. In this paper we introduce the problem of determining for a surface S, z(S), which is the maximum cochromatic number among all graphs G that embed in S. Some general bounds are obtained; for example, it is shown that if S is orientable of genus at least one, or if S is nonorientable of genus at least four, then z(S) is nonorientable of genus at least four, then z(S)≤χ(S). Here χ(S) denotes the chromatic number S. Exact results are obtained for the sphere, the Klein bottle, and for S. It is conjectured that z(S) is equal to the maximum n for which the graph Gn = K1K2 ∪ … ∪ Kn embeds in S.  相似文献   

17.
Let k denote a complete nonarchimedean local field with finite residue field. Let G be the group of k-rational points of a connected reductive linear algebraic group defined over k. Subject to some conditions, we establish a range of validity for the Harish-Chandra-Howe local expansion for characters of admissible irreducible representations of G. Subject to some restrictions, we also verify two analogues of this result.  相似文献   

18.
Given a finite group G, we write acd(G) to denote the average of the degrees of the irreducible characters of G. We show that if acd(G) ≤ 3, then G is solvable. Also, if acd(G) < 3/2, then G is supersolvable, and if acd(G) < 4/3, then G is nilpotent.  相似文献   

19.
A bicyclic graph is a connected graph in which the number of edges equals the number of vertices plus one. Let Δ(G) and ρ(G) denote the maximum degree and the spectral radius of a graph G, respectively. Let B(n) be the set of bicyclic graphs on n vertices, and B(n,Δ)={GB(n)∣Δ(G)=Δ}. When Δ≥(n+3)/2 we characterize the graph which alone maximizes the spectral radius among all the graphs in B(n,Δ). It is also proved that for two graphs G1 and G2 in B(n), if Δ(G1)>Δ(G2) and Δ(G1)≥⌈7n/9⌉+9, then ρ(G1)>ρ(G2).  相似文献   

20.
Let G be an (m+2)-graph on n vertices, and F be a linear forest in G with |E(F)|=m and ω1(F)=s, where ω1(F) is the number of components of order one in F. We denote by σ3(G) the minimum value of the degree sum of three vertices which are pairwise non-adjacent. In this paper, we give several σ3 conditions for a dominating cycle or a hamiltonian cycle passing through a linear forest. We first prove that if σ3(G)≥n+2m+2+max{s−3,0}, then every longest cycle passing through F is dominating. Using this result, we prove that if σ3(G)≥n+κ(G)+2m−1 then G contains a hamiltonian cycle passing through F. As a corollary, we obtain a result that if G is a 3-connected graph and σ3(G)≥n+κ(G)+2, then G is hamiltonian-connected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号