首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We prove that there is a constant c > 0, such that whenever pnc, with probability tending to 1 when n goes to infinity, every maximum triangle‐free subgraph of the random graph Gn,p is bipartite. This answers a question of Babai, Simonovits and Spencer (Babai et al., J Graph Theory 14 (1990) 599–622). The proof is based on a tool of independent interest: we show, for instance, that the maximum cut of almost all graphs with M edges, where M ? n and M ≤ /2, is “nearly unique”. More precisely, given a maximum cut C of Gn,M, we can obtain all maximum cuts by moving at most \begin{align*}\mathcal{O}(\sqrt{n^3/M})\end{align*} vertices between the parts of C. © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 2012  相似文献   

2.
We shall prove that if L is a 3-chromatic (so called “forbidden”) graph, and —Rn is a random graph on n vertices, whose edges are chosen independently, with probability p, and —Bn is a bipartite subgraph of Rn of maximum size, —Fn is an L-free subgraph of Rn of maximum size, then (in some sense) Fn and Bn are very near to each other: almost surely they have almost the same number of edges, and one can delete Op(1) edges from Fn to obtain a bipartite graph. Moreover, with p = 1/2 and L any odd cycle, Fn is almost surely bipartite.  相似文献   

3.
A cubic triangle-free graph has a bipartite subgraph with at least 4/5 of the original edges. Examples show that this is a best possible result.  相似文献   

4.
Let Ex(n, k, μ) denote the maximum number of edges of an n-vertex graph in which every subgraph of k vertices has at most μ edges. Here we summarize some known results of the problem of determining Ex(n, k, μ), give simple proofs, and find some new estimates and extremal graphs. Besides proving new results, one of our main aims is to show how the classical Turáan theory can be applied to such problems. The case μ = is the famous result of Turáan. © 1998 John Wiley & Sons, Inc. J. Graph Theory 29: 185–207, 1998  相似文献   

5.
Given a graph G = (V,E) and R, we write w(G)=∑xyεEdG(x)dG(y), and study the function w(m) = max {w(G): e(G) = m}. Answering a question from Bollobás and Erdös (Graphs of external weights, to appear), we determine wi(m) for every m, and we also give bounds for the case ≠ 1.  相似文献   

6.
7.
A graph has the neighbor‐closed‐co‐neighbor, or ncc property, if for each of its vertices x, the subgraph induced by the neighbor set of x is isomorphic to the subgraph induced by the closed non‐neighbor set of x. As proved by Bonato and Nowakowski [ 5 ], graphs with the ncc property are characterized by the existence of perfect matchings satisfying certain local conditions. In the present article, we investigate the spanning subgraphs of ncc graphs, which we name sub‐ncc. Several equivalent characterizations of finite sub‐ncc graphs are given, along with a polynomial time algorithm for their recognition. The infinite sub‐ncc graphs are characterized, and we demonstrate the existence of a countable universal sub‐ncc graph satisfying a strong symmetry condition called pseudo‐homogeneity. © 2005 Wiley Periodicals, Inc. J Graph Theory  相似文献   

8.
9.
Let H be a family of connected graphs. A graph G is said to be H-free if G is H-free for every graph H in H. In Aldred et al. (2010) [1], it was pointed that there is a family of connected graphs H not containing any induced subgraph of the claw having the property that the set of H-free connected graphs containing a claw is finite, provided also that those graphs have minimum degree at least 2 and maximum degree at least 3. In the same work, it was also asked whether there are other families with the same property. In this paper, we answer this question by solving a wider problem. We consider not only claw-free graphs but the more general class of star-free graphs. Concretely, given t≥3, we characterize all the graph families H such that every large enough H-free connected graph is K1,t-free. Additionally, for the case t=3, we show the families that one gets when adding the condition ∣H∣≤k for each positive integer k.  相似文献   

10.
An interval graph is said to be extremal if it achieves, among all interval graphs having the same number of vertices and the same clique number, the maximum possible number of edges. We give an intrinsic characterization of extremal interval graphs and derive recurrence relations for the numbers of such graphs. © 1993 John Wiley & Sons, Inc.  相似文献   

11.
12.
13.
An n‐vertex graph is called pancyclic if it contains a cycle of length t for all 3≤tn. In this article, we study pancyclicity of random graphs in the context of resilience, and prove that if p>n?1/2, then the random graph G(n, p) a.a.s. satisfies the following property: Every Hamiltonian subgraph of G(n, p) with more than edges is pancyclic. This result is best possible in two ways. First, the range of p is asymptotically tight; second, the proportion of edges cannot be reduced. Our theorem extends a classical theorem of Bondy, and is closely related to a recent work of Krivelevich et al. The proof uses a recent result of Schacht (also independently obtained by Conlon and Gowers). © 2011 Wiley Periodicals, Inc.  相似文献   

14.
Cartesian products of complete graphs are known as Hamming graphs. Using embeddings into Cartesian products of quotient graphs we characterize subgraphs, induced subgraphs, and isometric subgraphs of Hamming graphs. For instance, a graph G is an induced subgraph of a Hamming graph if and only if there exists a labeling of E(G) fulfilling the following two conditions: (i) edges of a triangle receive the same label; (ii) for any vertices u and v at distance at least two, there exist two labels which both appear on any induced u, υ‐path. © 2005 Wiley Periodicals, Inc. J Graph Theory 49: 302–312, 2005  相似文献   

15.
16.
17.
A natural generalization of graph Ramsey theory is the study of unavoidable sub-graphs in large colored graphs. In this paper, we find a minimal family of unavoidable graphs in two-edge-colored graphs. Namely, for a positive even integer k, let Sk be the family of two-edge-colored graphs on k vertices such that one of the colors forms either two disjoint Kk/2's or simply one Kk/2. Bollobás conjectured that for all k and ε>0, there exists an n(k,ε) such that if n?n(k,ε) then every two-edge-coloring of Kn, in which the density of each color is at least ε, contains a member of this family. We solve this conjecture and present a series of results bounding n(k,ε) for different ranges of ε. In particular, if ε is sufficiently close to , the gap between our upper and lower bounds for n(k,ε) is smaller than those for the classical Ramsey number R(k,k).  相似文献   

18.
L. Pyber 《Combinatorica》1985,5(4):347-349
Every graph onn vertices, with at leastc k n logn edges contains ak-regular subgraph. This answers a question of Erdős and Sauer.  相似文献   

19.
Combining Ky Fan’s theorem with ideas of Greene and Matoušek we prove a generalization of Dol’nikov’s theorem. Using another variant of the Borsuk–Ulam theorem due to Tucker and Bacon, we also prove the presence of all possible completely multicolored t-vertex complete bipartite graphs in t-colored t-chromatic Kneser graphs and in several of their relatives. In particular, this implies a generalization of a recent result of G. Spencer and F.E. Su.  相似文献   

20.
We propose a problem concerning the determination of the threshold function for the edge probability that guarantees, almost surely, the existence of various sparse spanning subgraphs in random graphs. We prove some bounds and demonstrate them in the cases of ad-cube and a two dimensional lattice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号