首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Candida guilliermondii FTI 20037 was cultured in sugarcane bagasse hydrolysate supplemented with 2.0 g/L of (NH4)2SO4, 0.1 g/L of CaCl2·2H2O, and 20.0 g/L of rice bran at 35°C; pH 4.0; agitation of 300 rpm; and aeration of 0.4, 0.6, or 0.8 vvm. The high xylitol production (20.0 g/L) and xylose reductase (XR) activity (658.8 U/mg of protein) occurred at an aeration of 0.4 vvm. Under this condition, the xylitol dehydrogenase (XD) activity was low. The apparent K M for XR and XD against substrates and cofactors were as follows: for XR, 6.4×10−2 M (xylose) and 9.5×10−3 mM (NADPH); for XD, 1.6×10−1 M (xylitol) and 9.9×10−2 mM (NAD+). Because XR requires about 10-fold less xylose and cofactor than XD for the condition in which the reaction rate is half of the V max, some interference on the overall xylitol production by the yeast could be expected.  相似文献   

2.
Aprotic N,N-dimethylpropionamide (DMPA) and N,N,N′,N′-tetramethylurea (TMU) are both strong donor solvents and coordinate to metal ions through the carbonyl oxygen atom. These solvents show a different conformational aspect in the bulk phase, i.e., DMPA exists as either a planar cis or a nonplanar staggered conformer, while TMU exists in a single planar cis conformer. It has been established that the manganese(II) ion is solvated by five molecules in both solvents. Interestingly, although the planar cis conformer of DMPA is more favorable than the nonplanar staggered one in the bulk phase, the reverse is the case in the coordination sphere of the metal ion, i.e., a conformational change occurs upon solvation. To reveal the thermodynamic aspect of this conformational change, the complexation of Mn(II) with bromide ions in DMPA and TMU has been studied by titration calorimetry at 298 K. It was found that the Mn(II) ion forms mono-, di- and tri-bromo complexes in both solvents, and their formation constants, enthalpies and entropies were obtained. The Δ H1 value for MnBr+ strongly depends on the solvent, i.e., it is positive (19.4 kJ-mol−1) in DMPA and negative (−8.7 kJ-mol−1) in TMU, whereas the Δ H^∘2 and Δ H3 values for the stepwise formation of MnBr2 and MnBr3 are both small and negative. The enthalpy of transfer ΔtH from DMPA to TMU, which is evaluated on the basis of the extrathermodynamic TATB assumption, is 25.5 kJ-mol−1 for Mn2+ and −3.6 kJ-mol−1 for MnBr+. These values indicate that the difference between the formation enthalpy of MnBr+ in the two solvents, Δ H^∘1 (DMPA) – Δ H1 (TMU), is mainly ascribed to the value of ΔtH(Mn2+). It is found that the metal ion is also five-coordinated in the monobromo complex, MnBr(DMPA)4+ . The enthalpy for the conformational change of DMPA from its planar cis to the nonplanar staggered form is evaluated to be −11 and −5.5 kJ-mol−1 for Mn(DMPA)52 + and MnBr(DMPA)4+, respectively. Note that these values are significantly smaller than the corresponding value (5.0 kJ-mol−1) in the bulk phase. We thus conclude that, although steric hindrance among solvent molecules is reduced by replacing one DMPA of Mn(DMPA)52 + with the relatively small bromide ion, DMPA molecules are still sterically hindered in the MnBr(DMPA)4+ complex.  相似文献   

3.
The production of pullulan from beet molasses by a pigment-free strain of Aureobasidium pullulans on shake-flask culture was investigated. Combined pretreatment of molasses with sulfuric acid and activated carbon to remove potential fermentation inhibitors present in molasses resulted in a maximum pullulan concentration of 24 g/L, a biomass dry wt of 14 g/L, a pullulan yield of 52.5%, and a sugar utilization of 92% with optimum fermentation conditions (initial sugar concentration of 50 g/L and initial pH of 7.0). The addition of other nutrients as carbon and nitrogen supplements (olive oil, ammonium sulfate, yeast extract) did not further improve the production of the exopolysaccharides. Structural characterization of the isolated polysaccharides from the fermentation broths by 13C-nuclear magnetic resonance spectroscopy and pullulanase digestion combined with size-exclusion chromatography confirmed the identity of pullulan and the homogeneity (>93% dry basis) of the elaborated polysaccharides by the microorganism. Using multiangle laser light scattering and refractive index detectors in conjunction with high-performance size-exclusion chromatography molecular size distributions and estimates of the molecular weight (M w =2.1−4.1×105), root mean square of the radius of gyration (R g =30−38 nm), and polydispersity index (M w /M n =1.4−2.4) were obtained. The fermentation products of molasses pretreated with sulfuric acid and/or activated carbon were more homogeneous and free of contaminating proteins. In the concentration range of 2.8−10.0 (w/v), the solution’s rheologic behavior of the isolated pullulans was almost Newtonian (within 1 and 1200 s−1 at 20°C); a slight shear thinning was observed at 10.0 (w/v) for the high molecular weight samples. Overall, beet molasses pretreated with sulfuric acid and activated carbon appears as an attractive fermentation medium for the production of pullulan by A. pullulans.  相似文献   

4.
Biosorption of metal ions with Penicillium chrysogenum   总被引:1,自引:0,他引:1  
Biosorption of metal ions with Penicillium chrysogenum mycelium is described in this article. Alkaline pretreatment was used to remove proteins and nucleic acids from cells, and this treatment increased the adsorption capacities, for Cr3+ from 18.6 mg g−1 to 27.2 mg g−1, for Ni2+ from 13.2 mg g−1 to 19.2 mg g−1, for Zn2+ from 6.8 mg g−1 to 24.5 mg g−1. The adsorption of metal ions was strongly pH dependent. The mycelium could beused for large-scale removal of Cr3+ from tannery wastewater. The results show that this inexpensive mycelium adsorbent has potential in industry because of its high adsorption capacity. The main chelating sites are amino groups (−NH2) of chitosan in the mycelium. A new model is established, which describes the relation of adsorption of metal ions on pH according to amino group chelating with metal ions and H+. The relative errors of simulation for Cu2+, Ni2+, Zn2+, and Cr3+ are 4.66%, 5.45%, 11.55%, and 1.69%, respectively.  相似文献   

5.
The sodium salt of [B12H12]2− dianion reacts with carboxylic acid halides to give a mixture of B-acylated product [B12H11COR]2− and an unstable intermediate, the latter undergoing hydrolysis to form [B12H11OH]2−. The ratio of the products formed depends on the nature of the radical R. The reaction mechanism was studied by NMR spectroscopy. A number of novel [B12H11COR]2− compounds were synthesized; their structures were confirmed by NMR and IR spectral data. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 980–985, May, 1998.  相似文献   

6.
The root explants of the germinated seedlings of Podophyllum hexandrum were grown in MS medium supplemented with indole acetic acid (IAA) (2 mg/L) and activated charcoal (0.5%), and healthy callus culture was obtained after incubation for 3 wk at 20°C. The cultivation of plant cells in shake flask was associated with problems such as clumping of cells and browning of media, which were solved by the addition of pectinase and polyvinylpyrrolidone. The effect of major media components and carbon source was studied on the growth and podophyllotoxin production in suspension culture. It was found that glucose was a better carbon source than sucrose and that NH4 +:NO3 ratio (total nitrogen concentration of 60 mM) and PO4 3− did not have much effect on the growth and product formation. The relative effect of culture parameters (inoculum level, pH, IAA, glucose, NH4 +:NO3 ratio, and PO4 3−) on the overall growth and product response of the plant cell suspension culture was further investigated by Plackett-Burman design. This indicated that inoculum level, glucose, IAA, and pH had significant effects on growth and production of podophyllotoxin. To identify the exact optimum concentrations of these parameters on culture growth and podophyllotoxin production, central composite design experiments were formulated. The overall response equations with respect to growth and podophyllotoxin production as a function of these culture parameters were developed and used to determine the optimum concentrations of these parameters, which were pH 6.0, 1.25 mg/L of IAA, 72 g/L of glucose, and inoculum level of 8 g/L.  相似文献   

7.
Substitution inertcis-diaqua CrIII complexes: cis-[(Lx−)CrIII(H2O)2](3−x)+ derived from N-donor ligands (Lx−) viz., bipyridine and 1,10-phenanthroline (x = 0) and N,O-donor ligands viz., nitrilotriacetate and anthranilate N,N-diacetate (x = 3) titrate as diprotic acids in aqueous solution and enhance the acidity of otherwise weakly acidic boric acid (H3BO3) producing mononuclear and binuclear mixed ligand CrIII-borate complexes: [(L)Cr(H2BO4)]x− and [(L)Cr(BO4)Cr(L)](1−2x)+ respectively through coordination of the H2O and/or OH ligands, cis-coordinated in the CrIII-complexes on the electron deficient BIII-atom in H3BO3 with release of protons. Deprotonation of the parent CrIII-complexes and their reactions with H3BO3 have been investigated by potentiometric method in aqueous solution,I = 0.1 mol dm−3 (NaNO3) at 25 ±0.1°C. The equilibrium constants have been evaluated by computerized methods and the tentative stoichiometry of the reactions have been worked out on the basis of the speciation curves  相似文献   

8.
The results of kinetic and equilibrium experiments with the set of reaction of proton abstraction from 4-nitrophenyl[bis(ethylsulphonyl)]methane in acetonitrile are reported. Two strong organic bases are used: 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) and 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene (MTBD). The rates of proton transfer reaction have been measured by T-jump method in the presence of perchlorate of the appropriate base as a common cation BH+ and supporting electrolyte-tetrabutylammonium perchlorate (TBAP) in the temperature range between 20–40°C are: k H =1.32×107−2.00×107 and 2.82×107−4.84×107 dm 3mol−1s−1 for MTBD and TBD respectively. The enthalpies of activation ΔH MTBD =13.5 and ΔH TBD =18.1 kJmol−1. The entropies of activation are negative: ΔS MTBD =−62.3 and ΔS TBD =−40.3 Jmol−1K−1. The change of the absorbance of the anion of 4-nitrophenyl[bis9ethylsulphonyl)]methane at the temperature 25°C in the presence of common cation BH+ gives the equilibrium constants K=705 and 906 M−1 for MTBD and TBD respectively. Kinetic and equilibrium results are discussed. The possible mechanism of proton transfer reaction between 4-nitrophenyl[bis(ethylsulphonyl)]methane and cyclic organic bases: MTBD and TBD in acetonitrile is proposed.  相似文献   

9.
Gamma radiolysis of oxygenated 1–10 mM azide solutions was carried out at various pH values. In oxygenated 10 mM azide solutions, H2O2 and NO 2 were observed as radiolytic products while NH3 was not. The concentration of H2O2 reached its maximum level at a dose of 1 kGy, whereas NO 2 yield increased non-linearly beyond 2 kGy in this system. Both in aerated and oxygenated systems, G(NO 2 ) and G(H2O2) were found to vary with N 3 concentration. The yield of NO 2 was found to be dependent on both dose rate and pH. On pulse radiolysis, NO 2 was found as a radiolytic product in aerated 1 mM azide solution at pH 6.8. In this system the intermediate generated exhibits absorbance around 250 nm. The overall results obtained during the present study reveal that in presence of both reducing radical (mainly e aq ) and oxygen, N 3 produced an intermediate possibly NH2O 2 radical, which is the prime source for NO 2 generation.  相似文献   

10.
A new vic-dioxime, N-{4-[[(2-hydroxyphenyl)methylene]hydrazinecarbonyl]phenyl}aminoglyoxime (H3L), was prepared by the reaction of anti-chloroglyoxime with salicylaldehyde 4-aminobenzoylhydrazone. The reaction of H3L with Cu(II) salts and an appropriate simple ligand gave only homotrinuclear complexes [Cu3(HL)2X2], whereas the reaction of H3L with Ni(II) salts gave mono-and homotrinuclear complexes [Ni(H2L)2 and Ni3(HL)2X2]. Also, heterotrinuclear complexes of H3L were prepared by the reaction of Ni(H2L)2 with Cu(II) salt and an appropriate simple ligand, [NiCu2(HL)2X2], X = Cl, NO 3 , SCN, CN, and N 3 . The new vic-dioxime and its complexes were identified by elemental analyses, IR, 1H NMR, UV-VIS, magnetic susceptibility, and mass spectral data. The elemental analyses and spectral data indicated that the hydrazone side of H3L acted as monobasic tridentate and the fourth position was occupied by simple ligands, such as Cl, NO 3 , SCN, CN, and N 3 . The text was submitted by the author in English.  相似文献   

11.
For the first time the interactions between zinc(II)tetra-4-alkoxybenzoyloxiphthalocyanine (Zn(4—O—CO—C6H4—OC11H23)Pc) and 1,4-diazabicyclo[2.2.2]octane (DABCO) in o-xylene and chloroform have been studied by calorimetric titration and NMR and electron absorption spectroscopic methods. It has been found that in o-xylene at concentrations of Zn(4—O—CO—C6H4—OC11H23)Pc higher than 6×10−4 mol⋅L−1 ππ dimers species are formed (λ max= 685 nm). Additions of DABCO to the solution up to mole ratio 1 : 8 (Zn(4—O—CO—C6H4—OC11H23)Pc : DABCO) lead to a shift of the aggregation equilibrium towards monomer species due to formation of monoligand axial complexes. Further increasing the DABCO concentration results in formation of Zn(4—O—CO—C6H4—OC11H23)Pc—DABCO—Zn(4—O—CO—C6H4—OC11H23)Pc sandwich dimers (λ max= 675 nm).  相似文献   

12.
With the objective of determining the kinetic behavior (growth, substrate, pH, and carotenoid production) and obtain the stoichiometric parameters of the fermentative process by Sporidiobolus salmonicolor in synthetic and agroindustrial media, fermentations were carried out in shaken flasks at 25°C, 180 rpm, and initial pH of 4.0 for 120 h in the dark, sampling every 6 h. The maximum concentrations of total carotenoids in synthetic (913 μg/L) and agroindustrial (502 μg/L) media were attained approximately 100 h after the start of the fermentative process. Carotenoid bioproduction is associated with cell growth and the ratio between carotenoid production and cell growth (Y P/X) is 176 and 163 μg/g in the synthetic and agroindustrial media, respectively. The pH of the agroindustrial fermentation medium varied from 4.2 to 8.5 during the fermentation. The specific growth rate (μ X) for S. salmonicolor in synthetic and agroindustrial media was 0.07 and 0.04 h−1, respectively. The synthetic medium allowed for greater productivity, obtaining maximum cell productivity (P x) of 0.08 g L−1 h−1 and maximum total carotenoid productivity (P car) of 14.2 μg L−1 h−1. Knowledge of the kinetics of a fermentative process is of extreme importance when transposing a laboratory experiment to an industrial scale, as well as making a quantitative comparison between different culture conditions.  相似文献   

13.
The temperature dependence of the molar heat capacity (C0 p) of hydrofullerene C60H36 between 5 and 340 K was determined by adiabatic vacuum calorimetry with an error of about 0.2%. The experimental data were used for the calculation of the thermodynamic functions of the compound in the range 0 to340 K. It was found that at T=298.15 K and p=101.325 kPa C0 p (298.15)=690.0 J K−1 mol−1,Ho(298.15)−Ho(0)= 84.94 kJ mol−1,So(298.15)=506.8 J K−1 mol−1, Go(298.15)−Ho(0)= −66.17 kJ mol−1. The standard entropy of formation of hydrofullerene C60H36 and the entropy of reaction of its formation by hydrogenation of fullerene C60 with hydrogen were estimated and at T=298.15 K they were ΔfSo= −2188.4 J K−1 mol−1 and ΔrSo= −2270.5 J K−1mol−1, respectively. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
pH potentiometric and spectrophotometric investigations on the complex formation equilibria of CuII with iminodiacetate (ida2−) and heterocyclic N-bases, viz. imidazole and benzimidazole (B), in aqueous solution in binary and ternary systems using different molar ratios of the reactants indicated the formation of complexes of the types, Cu(ida), Cu(ida)(OH), (ida)Cu(OH)Cu(ida), Cu(B)2+, Cu(H-1B)+, Cu(ida)(H−1B), (ida)Cu(B)Cu(ida) and (ida)Cu(H−1B)Cu(ida). Formation constants of the complexes at 25 ±1° at a fixed ionic strength,I = 0.1 mol dm−3 (NaNO3) in aqueous solution were evaluated and the complex formation equilibria were elucidated with the aid of speciation curves. Departure of the experimental values of the reproportionation constants(ΔlogK cu) of ternary Cu(ida)(H−1B) complexes from the statistically expected values, despite their formation in appreciable amounts at equilibrium, were assigned tofac(f)-mer(m) equilibria of the ida2− ligand coordinated to CuII, as the N-heterocyclic donors, (H−1B), coordinatetrans- to the N-(ida2−) atom in the binary Cu(ida) f complex to form the ternary Cu(ida) m (H−1B) complexes  相似文献   

15.
A fed-batch culture system with constant feeding (glucose 80 g L−1, 0.25 ml min−1) was used to study the influence of glucose on cell dry weight and exopolysaccharides production from submerged Tremella fuciformis spores in a 5-L stirred-tank bioreactor. The results showed that high levels of cell mass (9.80 g L−1) and exopolysaccharides production (3.12 g L−1) in fed-batch fermentation were obtained after 1 h of feeding, where the specific growth rate (μ) and exopolysaccharides yield on substrate consumed (YP/S) were 0.267 d−1 and 0.14 g g−1. Unlike batch fermentation, maximal cell mass and exopolysaccharides production merely reached 7.11 and 2.08 g L−1; the specific growth rate (μ) and exopolysaccharides yield on substrate consumed (YP/S) were 0.194 d−1 and 0.093 g g−1, respectively. It is concluded that the synthesis of exopolysaccharides can be promoted effectively when feeding glucose at a late exponential phase.  相似文献   

16.
A project is under way at the University of Tulsa to investigate the reduction of SO2 to H2S by sulfate reducing bacteria (SRB) in co-culture with mixed fermentative heterotrophs. We have previously demonstrated that SO2 is completely reduced to H2S (contact times of 1–2 s) in cultures in which no redox poising agents were required and glucose served as the ultimate source of carbon energy. We have proposed that such a microbial process could be coupled with a Claus reactor to recover elemental sulfur as a byproduct of regenerable, dry scrubbing processes for flue gas desulfurization. The development of this process concept has continued with a study of the use of molasses as a source of carbon and reduced nitrogen, identification of important non-SRB heterotrophs in process cultures, and the identification of the end products of carbohydrate fermentation that serve as carbon and energy sources for the SRB and identification of the end products of SRB metabolism.  相似文献   

17.
EDTA, the target compound of this study from the effluent of secondary biotreatment units, can be biodegraded by special microorganisms. So far, there are three species of microorganisms—Agrobacterium, Gram-negative BNCI, and DSM9103—that can degrade EDTA and are published in the literature. We have successfully isolated a bacterial strain that can degrade EDTA. It was identified as Burkhol cepacia, an aerobic species, elliptically shaped with a length of 5–15 μm. The growth medium contains 1000 mg/L of ferric-EDTA as carbon source, 750 mg/L of (NH4)2SO4+(NH2)2CO as nitrogen source, and 1000 mg/L of KH2PO4 as phosphorus source, and mineral factors such as Fe and Mg. Incubated at pH, 7.0, 30°C, and 150 rpm on a shaker for 15 d, the average specific growth rate of this microbe is 0.135 d−1, which shows that the respective degradation efficiency of Fe-EDTA and Cu-EDTA is 90 and 75% individually.  相似文献   

18.
A batch culture of Saccharomyces cerevisiae for the production of hexokinase was carried out in a 5-L fermentor containing 3 L of culture medium, which was in oculated with cell suspension (about 0.7 g/L), and left ferm entingat 35°C and pH 4.0. The aeration and agitation were adjusted to attain k La values of 15, 60, 135, and 230 h−1. The highest hexokinase productivity (754.6 U/[L h]) and substrate-cell conversion yield (0.21 g/g) occurred for a k La of 60 h−1. Moreover, the formation of hexokinase and cell growth are coupled events, which is in accordance with the constitutive character of this enzyme. Hexokinase formation for k La>60 h−1 was not enhanced probably owing to saturation of the respiratory pathway by oxygen.  相似文献   

19.
The filamentous fungus Sclerotinia sclerotiorum, grown on a xylose medium, was found to excrete one β-glucosidase (β-glu x). The enzyme was purified to apparent homogeneity by ammonium sulfate precipitation, gel filtration, anion-exchange chromatography, and high-performance liquid chromatography (HPLC) gel filtration chromatography. Its molecular mass was estimated to be 130 kDa by HPLC gel filtration and 60 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis, suggesting that β-glu x may be a homodimer. For p-nitrophenyl β-d-glucopyranoside hydrolysis, apparent K m and V max values were found to be 0.09 mM and 193 U/mg, respectively, while optimum temperature and pH were 55–60°C and pH 5.0, respectively. β-Glu x was strongly inhibited by Fe2+ and activated about 35% by Ca2+. β-Glu x possesses strong transglucosylation activity in comparison with commercially available β-glucosidases. The production rate of total glucooligosaccharides (GOSs) from 30% cellobiose at 50°C and pH 5.0 for 6 h with 0.6 U/mL of enzyme preparation was 80 g/L. It reached 105 g/L under the same conditions when using cellobiose at 350 g/L (1.023 M). Finally, GOS structure was determined by mass spectrometry and 13C nuclear magnetic resonance spectroscopy.  相似文献   

20.
A new symmetrical vicinal dioxime, N,N′-bis-{4-[[(2-hydroxyphenyl)methylene]hydrazinecarbonyl]phenyl}diaminoglyoxime (LH4), was prepared by reacting anti-dichloroglyoxime with salicylaldehyde 4-aminobenzoylhydrazone. The reaction of ligand with Ni2+ salts gave mono-and homopentanuclear complexes, [Ni(LH3)2] and [Ni5(LH)2X2]. Furthermore, heteropentanuclear complexes of dioxime ligand, [Cu4Ni(LH)2X4], were prepared by the reaction of [Ni(LH3)2)] with Cu2+ salt and a monodentate ligand (X = SCN, CN, or N 3 ). The structures of both the new symmetrical vicinal dioxime and its complexes were identified by elemental analyses, IR, 1H NMR, UV-VIS spectra, and magnetic susceptibility. The elemental analyses and spectral data indicate that the hydrazone side of ligand acts as a O,N,O′ tridentate and the fourth position is occupied with monodentate anion such as SCN, CN, N 3 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号