首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
In this paper, we present a two species amensalism model with non-monotonic functional response and Allee effect on second species. Local and global stability of the boundary and interior equilibrium are investigated. By introducing the Allee effect, we show that the boundary equilibrium have changed from unstable node and saddle into saddle-node. Also, the system subject to an Allee effect has increased the time of reach to its stable steady-state solution, but has no influence on the final density of the two species. Our results are supported by numeric simulations.  相似文献   

2.
In this paper, we discuss the qualitative behavior of a discrete host‐parasitoid model with the host subject to refuge and strong Allee effects. More precisely, we study the local and global asymptotic stability, stable manifolds and unstable manifolds of boundary equilibrium points, existence and unique positive equilibrium point, local and global behavior of the positive equilibrium point, and the uniform persistence for the model with the host subject to the refuge or both refuge and strong Allee effects. It is also proved that the model undergoes a transcritical bifurcation in a small neighborhood of the boundary equilibrium point. Some numerical simulations are given to support our theoretical results. We can obtain that the addition of the refuge may make the parasitoids go extinct while the hosts survive or may stabilize the host‐parasitoid interaction; the addition of both refuge and strong Allee effects has either a negative or positive impact on the coexistence of both populations.  相似文献   

3.
In this paper, the Allee effect is incorporated into a predator–prey model with Holling type II functional response. Compared with the predator–prey model without Allee effect, we find that the Allee effect of prey species increases the extinction risk of both predators and prey. When the handling time of predators is relatively short and the Allee effect of prey species becomes strong, both predators and prey may become extinct. Moreover, it is shown that the model with Allee effect undergoes the Hopf bifurcation and heteroclinic bifurcation. The Allee effect of prey species can lead to unstable periodical oscillation. It is also found that the positive equilibrium of the model could change from stable to unstable, and then to stable when the strength of Allee effect or the handling time of predators increases continuously from zero, that is, the model admits stability switches as a parameter changes. When the Allee effect of prey species becomes strong, longer handling time of predators may stabilize the coexistent steady state.  相似文献   

4.
Since intraguild predation (IGP) is a ubiquitous and important community module in nature and Allee effect has strong impact on population dynamics, in this paper we propose a three-species IGP food web model consisted of the IG predator, IG prey and basal prey, in which the basal prey follows a logistic growth with strong Allee effect. We investigate the local and global dynamics of the model with emphasis on the impact of strong Allee effect. First, positivity and boundedness of solutions are studied. Then existence and stability of the boundary and interior equilibria are presented and the Hopf bifurcation curve at an interior equilibrium is given. The existence of a Hopf bifurcation curve indicates that if competition between the IG prey and IG predator for the basal resource lies below the curve then the interior equilibrium remains stable, while if it lies above the curve then the interior equilibrium loses its stability. In order to explore the impact of Allee effect, the parameter space is classified into sixteen different regions and, in each region, the number of interior equilibria is determined and the corresponding bifurcation diagrams on the Allee threshold are given. The extinction parameter regions of at least one species and the necessary coexistence parameter regions of all three species are provided. In addition, we explore possible dynamical patterns, i.e., the existence of multiple attractors. By theoretical analysis and numerical simulations, we show that the model can have one (i.e. extinction of all species), two (i.e. bi-stability) or three (i.e. tri-stability) attractors. It is also found by simulations that when there exists a unique stable interior equilibrium, the model may generate multiple attracting periodic orbits and the coexistence of all three species is enhanced as the competition between the IG prey and IG predator for the basal resource is close to the Hopf bifurcation curve from below. Our results indicate that the intraguild predation food web model exhibits rich and complex dynamic behaviors and strong Allee effect in the basal prey increases the extinction risk of not only the basal prey but also the IG prey or/and IG predator.  相似文献   

5.
The goal of this work is to examine the global behavior of a Gause‐type predator–prey model in which two aspects have been taken into account: (i) the functional response is Holling type III; and (ii) the prey growth is affected by a weak Allee effect. Here, it is proved that the origin of the system is a saddle point and the existence of two limit cycles surround a stable positive equilibrium point: the innermost unstable and the outermost stable, just like with the strong Allee effect. Then, for determined parameter constraints, the trajectories can have different ω ? limit sets. The coexistence of a stable limit cycle and a stable positive equilibrium point is an important fact for ecologists to be aware of the kind of bistability shown here. So, these models are undoubtedly rather sensitive to disturbances and require careful management in applied contexts of conservation and fisheries. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
In this work, a bidimensional continuous-time differential equations system is analyzed which is derived from Leslie type predator–prey schemes by considering a nonmonotonic functional response and Allee effect on population prey. For ecological reason, we describe the bifurcation diagram of limit cycles that appear only at the first quadrant in the system obtained. We also show that under certain conditions over the parameters, the system allows the existence of a stable limit cycle surrounding an unstable limit cycle generated by Hopf bifurcation. Furthermore, we give conditions over the parameters such that the model allows long-term extinction or survival of both populations.  相似文献   

7.
We study a strategy to control the dynamics of one dimensional discrete maps known as the proportional feedback control method. We completely characterize the maps for which it is possible to stabilize the unstable or even chaotic dynamics towards an asymptotically stable equilibrium employing this method.Additionally, under conditions commonly assumed in modelling population dynamics, we show that the strategy drives the system to the optimal situation from a practical point of view, that is, to a global stable equilibrium since in that case the basin of attraction covers all the possible initial conditions. We also show that in some situations the strategy can be used to prevent the extinction of the population when controlling some models with the Allee effect.  相似文献   

8.
In this paper, complex dynamics of the discrete predator–prey model with the prey subject to the Allee effect are investigated in detail. Firstly, when the prey intrinsic growth rate is not large, the basins of attraction of the equilibrium points of the single population model are given. Secondly, rigorous results on the existence and stability of the equilibrium points of the model are derived, especially, by analyzing the higher order terms, we obtain that the non-hyperbolic extinction equilibrium point is locally asymptotically stable. The existences and bifurcation directions for the flip bifurcation, the Neimark–Sacker bifurcation and codimension-two bifurcations with 1:2 resonance are derived by using the center manifold theorem and the bifurcation theory. We derive that the model only exhibits a supercritical flip bifurcation and it is possible for the model to exhibit a supercritical or subcritical Neimark–Sacker bifurcation at the larger positive equilibrium point. Chaos in the sense of Marotto is proved by analytical methods. Finally, numerical simulations including bifurcation diagrams, phase portraits, sensitivity dependence on the initial values, Lyapunov exponents display new and rich dynamical behaviour. The analytic results and numerical simulations demonstrate that the Allee effect plays a very important role for dynamical behaviour.  相似文献   

9.
This study discusses a multispecies delay competitive system with weak Allee effects. In the situation where the model is a single species, the weak Allee effect represents a biological mechanism in which an increase in population is beneficial for low densities, but detrimental for high densities. In other words, the per-capita growth rate of each species is formulated by a sign-changing function of population density. In this paper, an existence theorem of positive equilibrium is established using the Brouwer degree theory. For cases without intraspecific delays, it is shown that the system has the property of permanence. Furthermore, a sufficient condition for a positive equilibrium to be globally attractive is obtained by means of the Lyapunov method.  相似文献   

10.
In this article, we propose and study a generalized Ricker–Beverton–Holt competition model subject to Allee effects to obtain insights on how the interplay of Allee effects and contest competition affects the persistence and the extinction of two competing species. By using the theory of monotone dynamics and the properties of critical curves for non-invertible maps, our analysis show that our model has relatively simple dynamics, i.e. almost every trajectory converges to a locally asymptotically stable equilibrium if the intensity of intra-specific competition intensity exceeds that of inter-specific competition. This equilibrium dynamics is also possible when the intensity of intra-specific competition intensity is less than that of inter-specific competition but under conditions that the maximum intrinsic growth rate of one species is not too large. The coexistence of two competing species occurs only if the system has four interior equilibria. We provide an approximation to the basins of the boundary attractors (i.e. the extinction of one or both species) where our results suggests that contest species are more prone to extinction than scramble ones are at low densities. In addition, in comparison to the dynamics of two species scramble competition models subject to Allee effects, our study suggests that (i) Both contest and scramble competition models can have only three boundary attractors without the coexistence equilibria, or four attractors among which only one is the persistent attractor, whereas scramble competition models may have the extinction of both species as its only attractor under certain conditions, i.e. the essential extinction of two species due to strong Allee effects; (ii) Scramble competition models like Ricker type models can have much more complicated dynamical structure of interior attractors than contest ones like Beverton–Holt type models have; and (iii) Scramble competition models like Ricker type competition models may be more likely to promote the coexistence of two species at low and high densities under certain conditions: At low densities, weak Allee effects decrease the fitness of resident species so that the other species is able to invade at its low densities; While at high densities, scramble competition can bring the current high population density to a lower population density but is above the Allee threshold in the next season, which may rescue a species that has essential extinction caused by strong Allee effects. Our results may have potential to be useful for conservation biology: For example, if one endangered species is facing essential extinction due to strong Allee effects, then we may rescue this species by bringing another competing species subject to scramble competition and Allee effects under certain conditions.  相似文献   

11.
The paper explores an eco-epidemiological model with weak Allee in predator, and the disease in the prey population. We consider a predator-prey model with type II functional response. The curiosity of this paper is to consider different competition coefficients within the prey population, which leads to the emergent carrying capacity. We perform the local and global stability analysis of the equilibrium points and the Hopf bifurcation analysis around the endemic equilibrium point. Further we pay attention to the chaotic dynamics which is produced by disease. Our numerical simulations reveal that the three species eco-epidemiological system without weak-Allee induced chaos from stable focus for increasing the force of infection, whereas in the presence of the weak-Allee effect, it exhibits stable solution. We conclude that chaotic dynamics can be controlled by the Allee parameter as well as the competition coefficients. We apply basic tools of non-linear dynamics such as Poincare section and maximum Lyapunov exponent to identify chaotic behavior of the system.  相似文献   

12.
利用计算机模拟方法研究一类离散种群相互作用模型的动态复杂性.通过理论推导建立食饵具有Allee效应和HollingⅡ型功能反应的自治捕食系统模型,用Matlab软件模拟离散种群的生长状态,探索研究参数的变化对种群大小的影响,阐释Allee效应及HollingⅡ型功能反应在种群间相互作用模型中的重要性.研究结果表明:1)当处理时间处于有效区间内时,处理时间越大种群的稳定共存参数域越大;2)Allee效应的引入使种群的动态行为更为复杂,从而增加了捕食者种群的灭绝风险;3)系统受强Allee效应的影响,种群会出现提前分叉现象,如果继续增加Allee效应就会导致种群灭绝;4)强Allee效应更容易使种群趋向灭绝.所得结论在丰富生态学理论的同时,提出了保护生态学的重要依据.  相似文献   

13.
In this work, a modified Holling–Tanner predator–prey model is analyzed, considering important aspects describing the interaction such as the predator growth function is of a logistic type; a weak Allee effect acting in the prey growth function, and the functional response is of hyperbolic type. Making a change of variables and time rescaling, we obtain a polynomial differential equations system topologically equivalent to the original one in which the non‐hyperbolic equilibrium point (0,0) is an attractor for all parameter values. An important consequence of this property is the existence of a separatrix curve dividing the behavior of trajectories in the phase plane, and the system exhibits the bistability phenomenon, because the trajectories can have different ω ? limit sets; as example, the origin (0,0) or a stable limit cycle surrounding an unstable positive equilibrium point. We show that, under certain parameter conditions, a positive equilibrium may undergo saddle‐node, Hopf, and Bogdanov–Takens bifurcations; the existence of a homoclinic curve on the phase plane is also proved, which breaks in an unstable limit cycle. Some simulations to reinforce our results are also shown. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
We investigate the evolutionary outcomes of a single species population subject to Allee effects within the framework of a continuous strategy evolutionary game theory (EGT) model. Our model assumes a single trait creates a phenotypic trade-off between carrying capacity (i.e., competition) and predator evasion ability following a Gaussian distribution. This assumption contributes to one of our interesting findings that evolution prevents extinction even when population exhibits strong Allee effects. However, the extinction equilibrium can be an ESS under some special distributions of anti-predation phenotypes. The ratio of variation in competition and anti-predation phenotypes plays an important role in determining global dynamics of our EGT model: (a) evolution may suppress strong Allee effects for large values of this ratio; (b) evolution may preserve strong Allee effects for small values of this ratio by generating a low density evolutionary stable strategy (ESS) equilibrium which can serve as a potential Allee threshold; and (c) intermediate values of this ratio can result in multiple ESS equilibria.  相似文献   

15.
Based on the classical discrete Ricker population model, we incorporate Allee effects by assuming rectangular hyperbola, or Holling-II type functional form, for the birth or growth function and formulate an extended Ricker model. We explore the dynamics features of the extended Ricker model. We obtain domains of attraction for the trivial fixed point. We determine conditions for the existence and stability of positive fixed points and find regions where there exist no positive fixed points, two positive fixed points one of which is stable and two positive fixed points both of which are unstable. We demonstrate that the model exhibits period-doubling bifurcations and investigate the existence and stability of the cycles. We also confirm that Allee effects have stabilization effects, by different measures, through numerical simulations.  相似文献   

16.
In this work, a bidimensional differential equation system obtained by modifying the well-known predator–prey Rosenzweig–MacArthur model is analyzed by considering prey growth influenced by the Allee effect.One of the main consequences of this modification is a separatrix curve that appears in the phase plane, dividing the behavior of the trajectories. The results show that the equilibrium in the origin is an attractor for any set of parameters. The unique positive equilibrium, when it exists, can be either an attractor or a repeller surrounded by a limit cycle, whose uniqueness is established by calculating the Lyapunov quantities. Therefore, both populations could either reach deterministic extinction or long-term deterministic coexistence.The existence of a heteroclinic curve is also proved. When this curve is broken by changing parameter values, then the origin turns out to be an attractor for all orbits in the phase plane. This implies that there are plausible conditions where both populations can go to extinction. We conclude that strong and weak Allee effects on prey population exert similar influences on the predator–prey model, thereby increasing the risk of ecological extinction.  相似文献   

17.
We study a predator–prey model with the Allee effect on prey and whose dynamics is described by a system of stochastic differential equations assuming that environmental randomness is represented by noise terms affecting each population. More specifically, we consider a term that expresses the variability of the growth rate of both species due to external, unpredictable events. We assume that the intensities of these perturbations are proportional to the population size of each species. With this approach, we prove that the solutions of the system have sample pathwise uniqueness and bounded moments. Moreover, using an Euler–Maruyama-type numerical method we obtain approximated solutions of the system with different intensities for the random noise and parameters of the model. In the presence of a weak Allee effect, we show that long-term survival of both populations can occur. On the other hand, when a strong Allee effect is considered, we show that the random perturbations may induce the non-trivial attracting-type invariant objects to disappear, leading to the extinction of both species. Furthermore, we also find the Maximum Likelihood estimators for the parameters involved in the model.  相似文献   

18.
In this paper, we investigate the complex dynamics induced by Allee effect in a predator–prey model. For the non-spatial model, Allee effect remains the boundedness of positive solutions, and it also induces the model to exhibit one or two positive equilibria. Especially, in the case with strong Allee effect, the model is bistable. For the spatial model, without Allee effect, there is the nonexistence of diffusion-driven instability. And in the case with Allee effect, the positive equilibrium can be unstable under certain conditions. This instability is induced by Allee effect and diffusion together. Furthermore, via numerical simulations, the model dynamics exhibits both Allee effect and diffusion controlled pattern formation growth to holes, stripe–hole mixtures, stripes, stripe–spot mixtures, and spots replication. That is to say, the dynamics of the model with Allee effect is not simple, but rich and complex.  相似文献   

19.
In this paper, we study a strongly coupled reaction–diffusion system describing three interacting species in a food chain model, where the third species preys on the second one and simultaneously the second species preys on the first one. We first show that the unique positive equilibrium solution is globally asymptotically stable for the corresponding ODE system. The positive equilibrium solution remains linearly stable for the reaction–diffusion system without cross-diffusion, hence it does not belong to the classical Turing instability scheme. We further proved that the positive equilibrium solution is globally asymptotically stable for the reaction–diffusion system without cross-diffusion by constructing a Lyapunov function. But it becomes linearly unstable only when cross-diffusion also plays a role in the reaction–diffusion system, hence the instability is driven solely from the effect of cross-diffusion. Our results also exhibit some interesting combining effects of cross-diffusion, intra-species competitions and inter-species interactions.  相似文献   

20.
The aim of this work is to build models of population dynamics for growth and competition interaction by starting with detailed models at the individual level. At the individual level, we start with detailed models where the growth is described by linear terms. By considering individual interferences and by using aggregation methods, we show that the population level, different growth equation can emerge. We present an example of the emergence of logistic growth and an example of the emergence of logistic growth with Allee effect. Furthermore, in the case of two populations, we show that individual interferences can lead at the population level, to a model which has the same qualitative dynamics behaviour as the Lotka-Volterra competition model. Finally, we show that our model brings to light the effects of spatial heterogeneity on competition models. First, we find the stabilizing effects but also we show that destabilizing effects can occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号