首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The application of a general synthetic approach to prepare molecular chains is reported. It is based on a step-by-step method each consisting first in a Pd-catalyzed reaction between ArI and HXAr′Br (Ar=aryl, Ar′=arylene) to give ArXAr′Br followed by a Cu-catalyzed replacement of Br by I to give ArXAr′I that can be reacted with HXAr′Br in the following step. The application of this method is here illustrated to prepare phenylene sulfide oligomers (X=S). Starting from RC6H4I-4 (R=H, MeO, NO2, NH2) and HSC6H4Br-x (x=2, 4) it is possible to grow chains in one direction to give X(C6H4S-m)nC6H4R-4 (n=1, X=Br, m=4, R=H, MeO, NO2, NH2, SMe and m=2, R=H, MeO, NO2; n=1, X=I, m=2 or 4, R=H, MeO, NO2; n=2, X=Br, m=2 or 4, R=H, MeO, NO2; n=2, X=I, m=4, R=MeO, NO2; n=3, X=Br, m=4, R=MeO, NO2; n=3, X=I, m=4, R=NO2 and n=4, X=Br or I, m=4, R=NO2). From HSC6H4Br-x and IC6H4I-4 the chains can grow in two directions to give X(C6H4S-4)nC6H4X-4 (n=2 or 4, X=Br or I), 2-XC6H4(SC6H4-4)nSC6H4X-2 (n=3 or 5, X=Br). Using diiodomesitylene the dithioethers C6HMe3-2,4,6-(SC6H4X-4)2-1,3 (X=Br, I) have been prepared. The series of sulfoxides X(C6H4S(O)-4)nC6H4R-4 (X=Br, n=1, R=MeO, n=3, R=NO2, n=4, R=Br; X=R=I, n=2) has been obtained from the corresponding thioethers and PhICl2.  相似文献   

2.
Structures of New Bis(pentafluorophenyl)halogeno Mercurates [{Hg(C6F5)2}3(μ‐X)] (X = Cl, Br, I) From the reactions of [PNP]Cl or [PPh4]Y (Y = Br, I) with Hg(C6F5)2 crystals of the composition [Cat][{Hg(C6F5)2}3X] (Cat = PNP, X = Cl ( 1 ); Cat = PPh4, X = Br ( 2 ), I ( 3 )) are formed. 1 crystallizes in the triclinic space group P1¯, 2 and 3 crystallize isotypically in the monoclinic space group C2/c. In the crystals the halide anions are surrounded by three Hg(C6F5)2 molecules. The reaction of [PPh4]Br with Hg(C6F5)2 under slightly changed conditions gives the compound [PPh4]2[{Hg(C6F5)2}3(μ‐Br)][{Hg(C6F5)2}2(μ‐Br)] ( 4 ).  相似文献   

3.
The reaction of thioquinanthrene 1 with sodium alkoxides and α,ω-dihaloalkanes leads to the formation of α,ω-bis[4-(4-methoxy-3-quinolinylthio)-3-quinolinylthio]alkanes 4 . The yield depends on the nature of α,ω-dihalo-alkanes. The effect of α,ω-dihaloalkanes of the following types: XCH2X (X = Cl,Br,I), X(CH2)2X (X = Cl,Br,I), Br(CH2)3Br and Br(CH2)6Br were studied. The preparation of 4-alkoxy-3′-(ω-bromoalkylthio)-3,4′-diquinolinyl sulfide 3 and their transformation to α,ω-bis(4-alkoxy-3-quinolinylthio)alkanes 6 were studied as well.  相似文献   

4.
Summary Gold(I) forms linear [AuL2]X complexes (X = Cl, Br, I or CIO4) with thioacetamide and thiobenzamide, AuLX compounds with thiobenzamide (X = CI or Br),N, N-dimethylthioformamide (X = Cl, Br or 1) andN-dimethylthioacetamide (X = CI, Br or 1). Thev(AuS) vibrations are assigned in the 320-260 cm–1 range. The i.r. spectra further suggest hydrogen bonding between the ligands and the anions. The conductivity measurements indicate dissociation of the [AuL2]X complexes (X = halide) and coordination of X in solution.Presented in part at the XIX ICCC, Prague, 1978.  相似文献   

5.
The Voronoi–Dirichlet polyhedra (VDP) and the method of intersecting spheres were used to perform crystal-chemical analysis of compounds containing complexes [Os a X b ] z(X = F, Cl, Br, I). Atoms of Os(V) at X = F and Cl, of Os(IV) at X = Cl, Br, and of Os(III) at X = Br were found to exhibit a coordination number of 6 with respect to the halogen atoms and to form OsX6octahedra. The coordination polyhedra of Os(III) for X = Cl, I are square pyramids OsX4. Each Os(III) atom forms one Os–Os bond; as a consequence, the OsBr6octahedra share a face in forming Os2Br3– 9complexes, while the OsX4pyramids (X = Cl, I) dimerize to produce [X4Os–OsX4]2–ions. The influence of the valence state of the Os atoms and of the nature of the halogen atoms on the composition and structure of the complexes formed and some characteristics of the coordination sphere of Os were considered.  相似文献   

6.
The “windmill” pattern cyclic halogen polymers (XBr)3 (X = Cl, Br, I) and (BrY)n (n = 3–6, Y = Cl, Br, I) have been investigated using the density functional theory. Due to the anisotropic distribution of its electron density, the halogen atom can form halogen-bonded interactions by functioning as both electron donor sites and electron acceptor sites. For (XBr)3 (X = Cl, Br, I) trimers, the Cl···Cl interaction is the weakest, and the I···I interaction is the strongest. For (BrY)n (n = 3–6, Y = Cl, Br, I), the Br···Br halogen bonds are the strongest in (BrY)4 tetramers. We predict that the iodine-4 synthon may allow creation of a self-assembled island during crystal growth. The angle formed by the electron-depleted sigma-hole, the halogen atom and the electron-rich equatorial belt perpendicular to the bond direction, together with the halogen-bond angle, can be used to explain the geometries and strength of the halogen-bond interactions. © 2018 Wiley Periodicals, Inc.  相似文献   

7.
The conformers of the monohalocyclohexasilanes, Si6H11X (X=F, Cl, Br or I) and the haloundecamethylcyclohexasilanes, Si6Me11X (X=F, Cl, Br or I) are investigated by DFT calculations employing the B3LYP density functional and 6‐31+G* basis sets for elements up to the third row, and SDD basis sets for heavier elements. Five minima are found for Si6H11X—the axial and equatorial chair conformers, with the substituent X either in an axial or equatorial position—and another three twisted structures. The equatorial chair conformer is the global minimum for the X=Cl, Br and I, the axial chair for X=F. The barrier for the ring inversion is ~13 kJ mol?1 for all four compounds. Five minima closely related to those of Si6H11X are found for Si6Me11X. Again, the equatorial chair is the global minimum for X=Cl, Br and I, and the axial chair for X=F. Additionally, two symmetrical boat conformers are found as local minima on the potential energy surfaces for X=F, Cl and Br, but not for X=I. The barrier for the ring inversion is ~14–16 kJ mol?1 for all compounds. The conformational equilibria for Si6Me11X in toluene solution are investigated using temperature dependent Raman spectroscopy. The wavenumber range of the stretching vibrations of the heavy atoms X and Si from 270–370 cm?1 is analyzed. Using the van′t Hoff relationship, the enthalpy differences between axial and equatorial chair conformers (Hax?Heq.) are 1.1 kJ mol?1 for X=F, and 1.8 to 2.8 kJ mol?1 for X=Cl, Br and I. Due to rapid interconversion, only a single Raman band originating from the “averaged” twist and boat conformers could be observed. Generally, reasonable agreement between the calculated relative energies and the experimentally determined values is found.  相似文献   

8.
Crystal Structures and Vibrational Spectra of Tetrahalogenoacetylacetonatoosmates(IV), [OsX4(acac)]?, X ? Cl, Br, I By reaction of the hexahalogenoosmates(IV) with acetylacetone the tetrahalogenoacetylacetonatoosmates(IV) [OsX4(acac)]? (X = Cl, Br, I) are formed, which have been purified by chromatography and precipitated from aqueous solution as tetraphenylphosphonium (Ph4P) or cesium salts. X-ray structure determinations on single crystals have been performed of (Ph4P)[OsCl4(acac)] ( 1 ) (triclinic, space group P1 , a = 9.9661(6), b = 11.208(2), c = 13.4943(7) Å, α = 101.130(9), β = 91.948(6), γ = 96.348(8)°, Z = 2), (Ph4P)[OsBr4(acac)] ( 2 ) (monoclinic, space group P21/n, a = 9.0251(8), b = 12.423(2), c = 27.834(2) Å, β = 94.259(7)°, Z = 4) and (Ph4P)[OsI4(acac)] ( 3 ) (monoclinic, space group P21/c, a = 18.294(3), b = 10.664(2), c = 18.333(3) Å, β = 117.68(2)°, Z = 4). Due to the increasing trans influence in the series O < Cl < Br < I the Os? O. distances of O.? Cl? X′ axes are lengthened and the OsO. stretching vibrations are shifted to lower frequencies. The Os? X′ bond lenghts are shorter as compared with symmetrically coordinated X? Os? X axes.  相似文献   

9.
Organometallic Compounds of Copper. XVIII. On the Reaction of the Alkyne Copper(I) Complexes [CuX(S‐Alkyne)] (X = Cl, Br, I; S‐Alkyne = 3,3,6,6‐Tetramethyl‐1‐thiacyclohept‐4‐yne) with the Phosphanes PMe3 and Ph2PCH2CH2PPh2 (dppe) The alkyne copper(I) halide complexes [CuX(S‐Alkyne)]n ( 2 ) ( 2 a : X = Cl, 2 b : X = Br, 2 c : X = I; S‐Alkyne = 3,3,6,6‐tetramethyl‐1‐thiacyclohept‐4‐yne; n = 2, ∞) add the phosphanes PMe3 and Ph2PCH2CH2PPh2 (dppe) to form the mono‐ and dinuclear copper compounds [(S‐Alkyne)CuX(PMe3)] ( 6 ) ( 6 a : X = Cl, 6 b : X = Br) and [(S‐Alkyne)CuX(μ‐dppe)CuX(S‐Alkyne)] ( 7 a : X = Cl, 7 b : X = Br, 7 c : X = I), respectively. By‐product in the reaction of 2 a with dppe is the tetranuclear complex [(S‐Alkyne)Cu(μ‐X)2Cu(μ‐dppe)2Cu(μ‐X)2Cu(S‐Alkyne)] ( 8 ). In case of the compounds 7 prolonged reaction times yield the alkyne‐free dinuclear copper complexes [Cu2X2(dppe)3] ( 9 ) ( 9 a : X = Cl, 9 b : X = Br, 9 c : X = I)). X‐ray diffraction studies were carried out with the new compounds 6 a , 6 b , 7 b , 8 , and 9 c .  相似文献   

10.
Element–Element Bonds. X. Studies of Chloro(diphenyl)stibane, Tribenzylstibane and Tribenzyldibromostiborane – Molecular Structures and Isotypism Chlorodiphenylstibane ( 1 d ) {P21/c; Z = 4; a = 1191.8(1); b = 853.4(1); c = 1112.0(1) pm; β = 93.60(1)°; –100 ± 2 °C} crystallizes isotypically with a series of homologous (H5C6)2E–X compounds (E = As, X = Cl, Br, I; E = Sb, X = Br, I); the structure type of tribenzylstibane ( 5 d ) {Pbca; Z = 8; a = 832.1(2); b = 2681.3(5) pm; c = 1600.9(3); –100 ± 3 °C} is already known from tribenzylmethanol, ‐silanol and ‐silane. Tribenzyldibromostiborane ( 6 ) {P21/n; Z = 4; a = 938.4(2); b = 2292.4(5); c = 1019.7(2) pm; β = 112.71(1)°; –100 ± 3 °C} does not show an analogous relationship to known structure types. Characteristic mean bond lengths and angles are { 1 d , Sb–Cl 240.9(1), Sb–C 214.0 pm, Cl–Sb–C 93.8°, C–Sb–C 98.6(1)°; 5 d , Sb–C 217.5(3) pm, C–Sb–C 94.9(6)°; 6 , Sb–Br 264.6; Sb–C 217.0(8) pm, Br–Sb–Br 179.4(1)°; C–Sb–C 120°; Br–Sb–C 84.8(2)° to 94.7(2)°}. Stiborane 6 exhibits very weak intermolecular Sb‥Br interactions of 417 pm which, however, affect the molecular conformation in a striking way.  相似文献   

11.
The following zinc(II), cadmium(II) and mercury(II) complexes of 4,6-dimethylpyrimidine-2(1H)-one (L) have been prepared and investigated by conductometric,IR and Raman methods: MX2L2 (M = Zn, X = Cl, Br(CHCl3, I(CHCl3, CF3COO; M = Cd, X = Cl, Br CF3COO; M = Hg, X = Cl, CF3COO), Cd2I4L3, Hg3X6L2 (X = Cl, Br), Hg3X6L4(X = Br, I), MX2L4·6H2O (M = Zn, Cd, X = CIO4, BF4; M = Hg, X = CIO4. The ligand is principally bonded through the unprotonated nitrogen atom and in some complexes also through the carbonylic oxygen atom. The zinc halide complexes are tetrahedrally coordinated, the trifluoroacetate ion is coordinated as a monodentate ligand.  相似文献   

12.
Gas‐phase anionic reactions X? + CH3SY (X, Y = F, Cl, Br, I) have been investigated at the level of B3LYP/6‐311+G (2df,p). Results show that the potential energy surface (PES) of gas‐phase reactions X? + CH3SY (X, Y = Cl, Br, I) has a quadruple‐well structure, indicating an addition–elimination (A–E) pathway. The fluorine behaves differently in many respects from the other halogens and the reactions F? + CH3SY (Y = F, Cl, Br, I) correspond to deprotonation instead of substitution. The gas‐phase reactions X? + CH3SF (X = Cl, Br, I), however, follow an A–E pathway other than the last two out going steps (COM2 and PR) that proceeds via a deprotonation. The polarizable continuum model (PCM) has been used to evaluate the solvent effects on the energetics of the reactions X? + CH3SY (X, Y = Cl, Br, I). The PES is predicted to be unimodal in the solvents of high polarity. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

13.
Reaction of [Ru6C(CO)16]2− with an excess of AgX (X = Cl, Br or I) affords heteronuclear clusters of formula [{Ru6C(CO)16Ag2X}2]2− in 80% yield, which for X = I and X = Br/Cl were crystallographically characterised. The formation of the cluster was followed in solution using electrospray ionisation mass spectrometry (ESI-MS), which revealed the presence of a wide range of clusters with the general formula [{Ru6C(CO)16} x Ag y X z ](2x−y+z)− where x = 1 or 2, y = 1, 2, 3 or 4 and z = 0, 1 or 2. The high yield of the product despite the evident complicated solution speciation is attributed to selective crystallisation of the observed compound driving the equilibrium toward this product.  相似文献   

14.
Oxidative addition of Cp*SbX2 (X=Cl, Br, I; Cp*=C5Me5) to group 13 diyls LM (M=Al, Ga, In; L=HC[C(Me)N (Dip)]2, Dip=2,6-iPr2C6H3) yields elemental antimony (M=Al) or the corresponding stibanylgallanes [L(X)Ga]Sb(X)Cp* (X=Br 1 , I 2 ) and -indanes [L(X)In]Sb(X)Cp* (X=Cl 5 , Br 6 , I 7 ). 1 and 2 react with a second equivalent of LGa to eliminate decamethyl-1,1’-dihydrofulvalene (Cp*2) and form stibanyl radicals [L(X)Ga]2Sb . (X=Br 3 , I 4 ), whereas analogous reactions of 5 and 6 with LIn selectively yield stibanes [L(X)In]2SbH (X=Cl 8 , Br 9 ) by elimination of 1,2,3,4-tetramethylfulvene. The reactions are proposed to proceed via formation of [L(X)M]2SbCp* as reaction intermediate, which is supported by the isolation of [L(Cl)Ga]2SbCp ( 11 , Cp=C5H5). The reaction mechanism was further studied by computational calculations using two different models. The energy values for the Ga- and the In-substituted model systems showing methyl groups instead of the very bulky Dip units are very similar, and in both cases the same products are expected. Homolytic Sb−C bond cleavage yields van der Waals complexes from the as-formed radicals ([L(Cl)M]2Sb . and Cp* . ), which can be stabilized by hydrogen atom abstraction to give the corresponding hydrides, whereas the direct formation of Sb hydrides starting from [L(Cl)M]2SbCp* via concerted β-H elimination is unlikely. The consideration of the bulky Dip units reveals that the amount of the steric overload in the intermediate I determines the product formation (radical vs. hydride).  相似文献   

15.
Reactions of [NH4]2[MS4](M = Mo,W), CuX(X = Br, I) and PPh3 in the solid state produced four mixed-metal sulfur containing clusters {Cu3MS3X}(PPh3)3S(M = Mo, W; X = Br, I), two of which (1: M = Mo, X = I; 2: M = W, X = Br) were structurally determined. Crystals of 1 and 2 are triclinic, space group P1 (1: a = 11.895(3), b = 13.107(1), c = 20.473(2)Å, α = 74.95(6), β = 84.87(8), γ = 64.27(7)°, Z=2, V=2776.1 Å3, Rw = 0.064 for 6443 observed reflections. 2: a = 11.876 (1), b = 13.065 (2), c = 20.325(2)Å, α = 74.95(1), β= 85.39(1), γ = 64.09(1)°, Z = 2, V = 2737.3Å3, Rw = 0.055 for ·5303 observed reflections). The results of the structure determination showed that the central units of the two cubane-like cluster compounds are composed of four metal atoms and four non-metal atoms situated at alternate corners. The differences of cubane-like cluster compounds obtained from solid state reactions and from solution reactions are discussed.  相似文献   

16.
Hydrothermal Synthesis and Crystal Structure of the Coinage Metal Mercury Chalcogenide Halides CuHgSeBr, AgHgSBr, and AgHgSI The hydrothermal reaction of CuBr and HgSe in concentrated aqueous HBr as solvent at 285 °C yields red crystals of CuHgSeBr, the hydrothermal reaction of AgX (X = Br, I) and HgS in half‐concentrated aqueous HX (X = Br, I) as solvent at 300/400 °C yields yellow crystals of AgHgSBr and AgHgSI. The compounds crystallize isotypically (orthorhombic, Pmma, a = 1020.1(3) pm, b = 431.2(1) pm, c = 925.6(3) pm for CuHgSeBr, a = 964.8(8) pm, b = 466.1(4) pm, c = 942.6(6) pm for AgHgSBr und a = 1015.9(2) pm, b = 464.77(5) pm, c = 984.9(2) pm for AgHgSI, Z = 4). The structures consist of plane folded Hg–Y chains connected by pairs of distorted Y2X2 terahedra sharing the X–X‐edge (M = Cu, Ag; X = Br, I; Y = S, Se). Atoms of the monovalent metals M have a strongly distorted tetrahedral coordination of two halogen and two chalcogen atoms. The new structure type shows distinct differences in the arrangement of the Hg–Y chains in comparision to the already known CuHgSeCl, but represents the superposition structure of the order‐disorder phase γ‐Hg3S2Cl2.  相似文献   

17.
Summary TheN-aminorhodanine (L) complexes: PdLX, (X = Br or I), ML1.5Cl2 (M = Pd or Pt), PtL2X2 (X = Br, I or ClO4), PdL3(ClO4)2, PdL1.5Cl4 and PdL3(ClO4)4 have been prepared and investigated. The ligand is bonded to the metal ion through the aminic nitrogen atom as monodentate or through this atom and the thiocarbonylic sulphur atom when it acts as chelating or bridging ligand. The carbonylic oxygen atom is never coordinated.  相似文献   

18.
Syntheses and Crystal Structures of the Monoammoniates of Lithium Halides: LiBr·NH3 and LiI·NH3 Crystals of LiBr·NH3 and LiI·NH3 sufficient in size and quality for X‐ray structure determinations were obtained in autoclaves by the reaction of Li with NH4Br and LiH with NH4I at 523 K and 423 K respectively. Lattice constants obtained from X‐ray single crystal data are: LiBr·NH3: P21/n, a = 7, 077(2)Å, b = 7, 026(2)Å, c = 7, 490(2)Å β = 114, 84(3)°, Z = 4 LiI·NH3: P21, a = 4, 493(1)Å, b = 6, 077(1)Å, c = 7, 512(2)Å β = 107, 15(3)°, Z = 2 The ammoniates contain different structural building units. Both of them contain layers of connected tetrahedra Li(NH3)X3/3 with X = Br, I. Tetrahedra‐double units with a common Br‐Br edge occur, whilst for the iodide all tetrahedra are exclusively vertex connected to puckered layers. IR‐ and Raman‐spectroscopic measurements show, that only weak H‐bridges N‐H···X are present and that the NH3‐ligands are in fixed positions at room temperature.  相似文献   

19.
Summary The synthesis and physical properties of crystalline thorium(IV) complexes, Th(ClO4)4 · 6 LNO, ThX4 · 2 LNO (X = Br or SCN), ThX4 · 4 LNO (X = NO3 or I) andTh(ClO4)4 · 10 TMSO, Th(NO3)4 · 6 TMSO, ThX4 · 4 TMSO (X = Cl or Br), ThI4 · 6 TMSO and Th(NCS)4 · 2 TMSO (where LNO = 2,6-lutidine-N-oxide and TMSO = tetramethylene sulphoxide) are reported together with their i.r. spectra, molar conductivities, molecular weights, t. g. a. and d. t. a. data. In all the complexes, LNO and TMSO are bonded to thorium(IV) through oxygen. The coordination number of thorium(IV) in these complexes varies from six to ten depending upon the nature of the anions.Presented at the XVI Annual Convention of Chemists, Andhra University, Waltair, A. P. India, December 27–31, 1978.  相似文献   

20.
The isocyanide trans-[PdBr2(CNC6H4-4-X′)2] (X′=Br, I) and nitrile trans-[PtX2(NCC6H4-4-X′)2] (X/X′=Cl/Cl, Cl/Br, Br/Cl, Br/Br) complexes exhibit similar structural motif in the solid state, which is determined by hitherto unreported four-center nodes formed by cyclic halogen bonding. Each node is built up by four Type II C−X′⋅⋅⋅X−M halogen-bonding contacts and include one Type I M−X⋅⋅⋅X−M interaction, thus giving the rhombic-like structure. These nodes serve as supramolecular synthons to form 2D layers or double chains of molecules linked by a halogen bond. Results of DFT calculations indicate that all contacts within the nodes are typical noncovalent interactions with the estimated strengths in the range 0.6–2.9 kcal mol−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号