首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single-walled carbon nanotubes (SWNTs) have been grown on silicon nanowires (SiNWs) by ethanol chemical vapor deposition (CVD) with Co catalysts. We have found that a surface SiOx layer of SiNWs is necessary for the formation of active Co catalysts. In fact, the yield of the SWNT/SiNW heterojunctions gradually decreases as the thickness of the surface SiOx layer decreases. Since thin SiNWs are transparent to an electron beam, the Co nanoparticles on SiNWs can be easily observed as well as SWNTs by TEM. Therefore, the relationship between the diameters of each SWNT and its catalyst nanoparticle has been investigated. The diameters of SWNTs are equal to or slightly smaller than those of the catalyst nanoparticles.  相似文献   

2.
Single-walled carbon nanotubes (SWNTs) were prepared with ethanol chemical vapor deposition (CVD) on SiO2 flat and pillar-patterned Si substrates. The effect of CVD temperatures from 600 to 800 °C on SWNTs yields was investigated. By virtue of its unperturbed environment, an individual suspended SWNT grown between two different SiO2 pillars provides a possibility to study the phonon band structure of SWNT itself at a single-nanotube level. Raman spectra of individual SWNTs grown between pillars were investigated systematically.  相似文献   

3.
The abundance of carbon single-wall nanotubes (SWNTs) in soot synthesized by pulsed laser evaporation of graphite is studied over a wide range of synthesis conditions. The derived SWNT growth time-scale appears to be much longer than any characteristic time-scale in a simplified model of the relaxation of a high-pressure hot condensing gas bubble in a background atmosphere. It is concluded that SWNT nucleation and growth take place in relaxed, condensed, thermalized evaporation products at an optimal temperature between 850-1250 °C at a rate of few 7m length per second, which is consistent with a condensed state "precipitation" mechanism for the SWNT formation.  相似文献   

4.
Single-walled carbon nanotubes (SWNTs) are luminescent. Up to now, two preparation methods, both of which isolate individual SWNTs, have enabled the detection of nanotube bandgap photoluminescence (PL): encapsulation of individual SWNTs into surfactant micelles and direct growth of individual SWNTs suspended in air between pillars. This paper compares the PL obtained from suspended SWNTs to published PL data obtained from encapsulated SWNTs. We find that emission peaks are blueshifted by 28 meV on average for the suspended nanotubes as compared to the encapsulated nanotubes. Similarly, the resonant absorption peaks at the second set of van Hove singularities are blueshifted on average by 16 meV. Both shifts depend weakly on the particular chirality and diameter of the SWNT. PACS 78.67.Ch; 78.55.-m  相似文献   

5.
We report a comparative study on diameter distribution of single-walled carbon nanotubes (SWNTs) grown using nanoporous templates having different pore sizes, namely, zeolite-L, ZSM-5, and MCM-41. The change in the tube diameter based on catalytic film thickness and growth temperature was systematically investigated. We prepared very thin Fe catalyst films with nominal thicknesses of 0.5, 0.7, 1, and 2 Å, and the growth temperature was varied from 850 to 925 °C. We found that the SWNT mean diameter and size distribution width decreased with decreasing catalyst film thickness, growth temperature, and pore sizes of the templates. In addition, all SWNTs grown from the nanoporous templates have narrower diameter distribution compared to the SWNTs grown from SiO2 planar surface. The obtained results are straightforward and suggest that the template growth has potential for SWNT growth with very narrow diameter distribution.  相似文献   

6.
When single-wall carbon nanotubes (SWNTs) were formed by pulsed Nd:YAG laser ablation or arc discharge, the yield depended on the metal catalyst: NiCo> Ni∼NiFe≫Co∼Fe>Pd∼Pt. It appears that an effective catalyst for SWNT growth must satisfy three conditions: it must be a good graphitization catalyst, have low solubility in carbon, and have a stable crystallographic orientation on graphite. NiCo, Ni, and NiFe satisfy these three conditions. The poor catalytic activities of Co, Fe, Pd, and Pt for SWNT formation would be explained by the ineffectiveness of Pt and Pd as graphitization catalysts, crystallographic orientation instability of Co crystals on graphite, and high solubility of Fe in graphite. Received: 29 October 2001 / Accepted: 7 November 2001 / Published online: 23 January 2002  相似文献   

7.
Chemical vapor deposition (CVD) growth of horizontally aligned single-walled carbon nanotubes (SWNTs) was studied using two representative carbon source sources: ethanol and methane. The resulting SWNTs were compared for similar reaction conditions which were based on the formation of Ni metal nanoparticles selective electrochemical deposition (SED) on the defect sites of SWNTs. The products were analyzed by Raman spectroscopy and SEM. The results demonstrate that methane was much better carbon source for growing high quality horizontal alignment of SWNTs than ethanol due to the etching effects of OH radicals on the SWNTs.  相似文献   

8.
Single-walled carbon nanotubes (SWNTs) were synthesized using size-controlled catalyst nanoparticles created by the pulsed laser ablation method. Specifically, the alloy particles (Co/Mo or Co/Pt) were prepared by ablation of the target alloy materials in an inert gas atmosphere. Size selection was performed using a differential mobility analyzer (DMA). The obtained nanoparticles were deposited on a quartz substrate from which SWNTs were grown by the alcohol catalytic CVD (ACCVD) technique that was developed by the authors group. AFM and Raman scattering analysis revealed that SWNTs were successfully synthesized. It seems the Co/Mo alloy catalyst was more effective for the synthesis of SWNTs than the Co/Pt catalyst, though this is a preliminary result to be further investigated. PACS 36.40.-c; 61.46.+w; 65.80.+n; 78.30.Na; 81.07.de  相似文献   

9.
Excited-state lifetimes of isolated single-walled semiconducting carbon nanotubes (SWNTs) have been measured for the first time; these excited states, observed over the 400- to 1800-nm spectral domain, possess lifetimes that range from several ps to more than 100 ps. Sub-ps to ps decay components are assigned to relaxation in SWNT bundles. Interrogation of the samples with different SWNT mean diameters further confirms the dependence of the excited-state lifetime on roll-up vector. The ratio of fast and slow decaying component contributions in the first van Hove band can be viewed as a measure of the bundle content. PACS 78.67.Ch; 78.47.+p; 61.46.+w; 73.22.-f  相似文献   

10.
The carbon nanotube market is steadily growing and projected to reach $1.9 billion by 2010. This study examines the economics of manufacturing single-walled carbon nanotubes (SWNT) using process-based cost models developed for arc, CVD, and HiPco processes. Using assumed input parameters, manufacturing costs are calculated for 1 g SWNT for arc, CVD, and HiPco, totaling $1.9 billion by 2010. This study examines the economics of manufacturing single-walled carbon nanotubes (SWNT) using process-based cost models developed for arc, CVD, and HiPco processes. Using assumed input parameters, manufacturing costs are calculated for 1 g SWNT for arc, CVD, and HiPco, totaling 1,906, 1,706, and1,706, and 485, respectively. For each SWNT process, the synthesis and filtration steps showed the highest costs, with direct labor as a primary cost driver. Reductions in production costs are calculated for increased working hours per day and for increased synthesis reaction yield (SRY) in each process. The process-based cost models offer a means for exploring opportunities for cost reductions, and provide a structured system for comparisons among alternative SWNT manufacturing processes. Further, the models can be used to comprehensively evaluate additional scenarios on the economics of environmental, health, and safety best manufacturing practices.  相似文献   

11.
Laser ablation of either Ni or Fe is used to create nanoparticles within a reactive flame environment for catalysis of carbon nanotubes (CNTs). Ablation of Fe in a CO-enriched flame produces single-walled nanotubes, whereas, ablation of Ni in an acetylene-enriched flame produces carbon nanofibers. These results illustrate that the materials for catalyst particle formation and CNT, SWNT or nanofiber, inception and growth in the aerosol phase can be supplied from separate sources; a metal-carbon mixture produced by condensation is not necessary. Both particle formation and CNT inception can begin from molecular species in a laser-ablation approach within the complex chemical environment of a flame. Moreover, SWNTs and nanofibers can be synthesized within very short timescales, of the order of tens of milliseconds. Finally, high-intensity pulsed laser light can destroy CNTs through either vaporization or coalescence induced by melting. PACS 42.62 Fi; 81.05.Tp; 82.80.Ch; 81.15 Fg  相似文献   

12.
In this paper, we report that ruthenium is an active and efficient catalyst for growth of single-walled carbon nanotubes (SWNTs) by a chemical vapor deposition (CVD) process for the first time. High density random and horizontally superlong well-oriented SWNTs on substrate can be fabricated via CH4 or EtOH as carbon source under suitable conditions. Scanning and transition electron microscopy investigations, Raman spectroscopy and atomic force microscopy measurements show the tubular structure, the high crystallinity, and the properties of the grown nanotubes. The results show that the SWNTs from ruthenium have better structural uniformity with less defects and provides an alternative catalyst for SWNTs growth. The successful growth of SWNTs by Ru catalyst provides new experimental information for understanding the growth mechanism of SWNTs, which may be helpful for their controllable synthesis.  相似文献   

13.
Hydrophilic surface of carbon nanotubes (CNTs) are of great interest for various applications including chemical and biological sensing. Surface functionalization of single wall carbon nanotubes (SWNTs) mats with a biocompatible polymer polyvinyl alcohol (PVA) was studied. PVA modification induced a drastic change in water wettability of the SWNT surface transforming it from hydrophobic to highly hydrophilic. These PVA modified SWNTs mats have also demonstrated increasing impedance variation in relative humidity compared to the pristine nanotubes. An appreciable change in conductivity of Y-junction SWNT mats as a function of relative humidity indicates its potential application as humidity sensor. This higher sensitivity for humidity variation shown in Y-junction SWNT mats could be attributed to the greater portion of semiconducting nanotubes in these mats revealed by Raman analysis. A possible conductance changing mechanism of surface modified SWNTs mats is discussed.  相似文献   

14.
A large number of individual single-walled carbon nanotubes (SWNTs) were obtained by dilution of nanotube dispersions in N-methyl-2-pyrrolidone (NMP). Up to 70% individual SWNTs are contained in the NMP dispersions with concentrations of less than 4.0×10-3 mg/mL. The nonlinear optical and optical limiting properties of SWNT dispersions were studied by using the Z-scan technique at 532 nm. As the concentration of SWNTs is increased, the nonlinear extinction (NLE) and optical limiting effects improve significantly, while the limiting thresholds decrease gradually. The individual SWNTs show similar NLE effect to zinc phthalocyanine nanoparticles, while also exhibiting larger NLE coefficients than Mo6S4.5I4.5 nanowires.  相似文献   

15.
王公堂 《中国物理 B》2011,20(6):67305-067305
Individual and isolated single-walled carbon nanotubes (SWNTs) are important for fabricating relevant nanode- vices and studying the properties of the SWNT devices. In this work, we demonstrate that individual and isolated SWNT can be selected and obtained from a film containing a huge number of SWNTs. By using both the polymethyl-methacrylate (PMMA) as a negative resist and the electron beam lithography, the selected SWNT can be fixed on a substrate, while the other SWNTs in the film can lift off. The selected SWNT can be used to fabricate nanodevice and a gas sensor of oxygen is demonstrated in this work.  相似文献   

16.
Single- and multi-wall carbon nanotubes have been synthesized by the gas-phase catalytic reaction of colloidal solutions of metal nanoparticles using a vertical flow reactor. The reverse micelle solution of the Co–Mo nanoparticles with the mean diameter of 11 nm dissolved in toluene was injected directly into the reactor maintained at 1200 °C. The nanoparticles and the solvent act as the catalyst and carbon source, respectively. When the concentration of the thiophene additive is low (1 wt.%), the formation of SWNT bundles preferentially occurred. The SWNT bundles were present together with the relatively small metal nanoparticles with the diameter of 0.5–5.5 nm. It is likely that the original nanoparticles with the diameter of 11 nm break into smaller ones, 1–2 nm diameters, which is suitable for the SWNT growth. The synactic effect of Co and Mo was also observed.  相似文献   

17.
We report on the assembly of single-walled carbon nanotubes (SWNTs) and gold nanoparticles (NPs) hybrid structure without any surface modification of SWNTs on patterns of Au nanoparticles (NPs). Microscale Au NP patterns were created on composite self-assembled monolayer (SAM) templates of octadecanethiol (ODT) and octanedithiol (OD) through self-assembly of Au NPs via the thiol-Au chemical bond onto the OD region. On such templates, we observed extensive adhesion and strong affinity of SWNTs on the Au NPs and no SWNT on ODT. We also examined systematically the adhesion of SWNTs on ODT with varying coverage of vapour-deposited Au. We observed little SWNT attachment even when there are high-density of Au clusters on the ODT SAM. Extensive adhesion of SWNTs is observed only when the coverage of ODT by Au is almost complete. Dynamic contact angle measurements of dichlorobenzene on the ODT/Au substrates revealed a direct correlation between the surface wettability and the SWNT assembly on a molecular template.  相似文献   

18.
Optical studies of single-walled carbon nanotubes have advanced greatly through the recent discovery of near-infrared band gap photoluminescence from single-walled carbon nanotubes (SWNT) isolated in aqueous surfactant suspensions. This fluorescence emission has enabled the detection of many distinct optical transitions and their assignment to specific (n,m) semiconducting species of SWNT. The resulting set of precise transition energies presents a challenge to current theoretical models of nanotube electronic structure and a guide to nanotube researchers using resonance Raman spectroscopy. In the near future, structure-resolved fluorimetry should prove useful for revealing the quantitative (n,m) composition of mixed SWNT samples through sensitive, rapid, and nondestructive measurements. It will also permit detailed studies of many physical and chemical processes that vary with nanotube structure. PACS 71.35.Cc; 78.67.Ch; 78.67.-n  相似文献   

19.
We show that single-walled carbon nanotube (SWNT) bundles emit visible fluorescence in the presence of noble metal nanoparticles and nanorods in the solid state. Conductivity measurements with metallic nanotubes, isolated from pristine SWNTs, show that they become semiconducting in the presence of the metal nanoparticles. Nanoparticle binding increases the defects in the nanotube structures which is evident in the Raman spectra. The metal-semiconductor transition removes the nonradiative decay channels of the excited states enabling visible fluorescence. Nanotube structures are imaged using this emission with resolution below the classical limits.  相似文献   

20.
The production of single-walled carbon nanotubes (SWNTs) using the cw CO2-laser ablation technique is reported. Different metals and metal concentrations in the carbon targets as well as different buffer gases and gas pressures have been used in order to study their influence on the formation of SWNTs. It is shown that the conditions near the evaporation zone, i.e. especially the local temperature environment induced by the laser radiation as well as the used metals play a key role in the formation process of SWNTs. Employing a very simple experimental setup the cw CO2-laser ablation technique easily provides the environment favorable for the growth of high quality SWNT material under a wide range of experimental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号