首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amorphous and microcrystalline Fe-B alloys in the composition range (4–25) at % B, fabricated by melt spinning, were investigated by pulse nuclear magnetic resonance (NMR) on 11B nuclei at 4.2 K. Alloy samples were prepared both from a natural mixture of isotopes and an isotope mixture 56Fe-11B. The NMR spectra were measured at different boron contents. The local atomic structure of amorphous Fe-B alloys has been determined. The amorphous alloys consist of microregions (clusters) with short-range order of the tetragonal and orthorhombic Fe3B-phase types, as well as of the α-Fe type.  相似文献   

2.
Amorphous and crystalline Fe-B alloys (5–25 at % B) were studied using pulsed 57Fe nuclear magneticr esonance at 4.2 K. The alloy samples were prepared from a mixture of the 57Fe and 10B isotopes by rapid quenching from the melt. In the microcrystalline Fe-(5–12 at %) B alloys, the resonance frequencies were measured for local states of 57Fe nuclei in the tetragonal and orthorhombic Fe3B phases and also in α-Fe. The resonance frequencies characteristic of 57Fe nuclei in α-Fe crystallites with substitutional impurity boron atoms in the nearest neighborhood were also revealed. In the resonance frequency distribution P(f) in the amorphous Fe-(18–25) at % B alloys, there are frequencies corresponding to local Fe atom states with short-range order of the tetragonal and orthorhombic Fe3B phases. As the boron content decreases below 18 at %, the P(f) distributions are shifted to higher frequencies corresponding to 57Fe NMR for atoms exhibiting a short-range order of the α-Fe type. The local magnetic structure of the amorphous Fe-B alloys is also considered.  相似文献   

3.
Amorphous and quenched crystalline Fe-B alloys in the composition range of 4–25 at % B were prepared by melt spinning and investigated by 57Fe Mössbauer spectroscopy at T = 87 K. The states of iron atoms in the α-Fe phases, including iron atoms having boron atoms in the nearest coordination sphere, and in the orthorhombic (o) and tetragonal (T) Fe2B phases are detected in the microcrystalline alloys. The short-range order and the local atomic structure of the amorphous Fe-B alloys are determined. The amorphous alloys consist of microregions (clusters) with short-range order of the t- and o-Fe2B and α-Fe types. The dependence of the content of various types of clusters on the alloy composition is quantitatively estimated.  相似文献   

4.
The short-range order around boron, aluminum, and iron atoms in Fe75B25 and Fe70Al5B25 amorphous alloys has been studied by 11B and 27Al nuclear magnetic resonance at 4.2 K and 57Fe Mössbauer spectroscopy at 87 and 295 K. The average magnetic moment of iron atoms μ(Fe) in these alloys has been measured by a vibrating sample magnetometer. It has been revealed that the substitution of aluminum atoms for iron atoms does not disturb μ(Fe) in the Fe70Al5B25 alloy, gives rise to an additional contribution to the 11B NMR spectrum in the low-frequency range, and shifts maxima of the distribution of hyperfine fields at the 57Fe nuclei. In the Fe70Al5B25 amorphous alloy, the aluminum atoms substitute for iron atoms in the nearest coordination shells of boron and iron atoms. This alloy consists of nanoclusters in which boron and iron atoms have a short-range order of the tetragonal Fe3B phase type.  相似文献   

5.
The influence of a few percent neodynium additives to Fe-B alloy on the hyperfine parameters was investigated. It was found that Nd decreases the hyperfine field of amorphous Fe-B alloys. The samples annealed at temperatures between 600°C and 700°C contain α-Fe and Fe3B phases. The average hyperfine field of Fe3B phase increases with increasing Nd content and decreases with increasing annealing temperature. The average isomer shift of Fe3B phase decreases with increasing Nd content. The experimental data show that the change of hyperfine parameters of the Fe3B phase in the studied alloys is due to Nd atom.  相似文献   

6.
The local atomic and magnetic structure of Fe70Cr15B15 X-ray amorphous alloy is studied by means of 11B nuclear magnetic resonance (NMR) and 57Fe Mössbauer spectroscopy. It is determined that Fe85B15 and Fe70Cr15B15 X-ray amorphous alloys consist of microregions (nanocrystals) with short-range orders of t-Fe3B and α-Fe phases. It was found out that chromium atoms in the Fe70Cr15B15 X-ray amorphous alloy are evenly distributed in these two nanocrystals, forming t-(Fe,Cr)3B and α-Fe(Cr) phases.  相似文献   

7.
Applying the hypercooling technique, the metastable-phase Fe3B, instead of the stable-phase Fe2B, is formed directly in the bulk Fe-B eutectic alloy melt and can be further preserved at room temperature. Measurement of magnetic properties shows that, for the bulk Fe-B eutectic alloy with Fe3B phase, the intrinsic coercivity and retentivity become smaller, and the saturation magnetization is larger, than the stable eutectic alloy (α-Fe/Fe2B) and some Fe-B amorphous alloys.  相似文献   

8.
The crystallization behaviour of the Fe?B amorphous alloy powders prepared by the chemical reduction method has been investigated by Mössbauer spectroscopy. In comparison to amorphous ribbons prepared by melt-spinning, a different crystallization behaviour has been observed. After annealing the amorphous samples entirely crystallized into three crystalline phases: α-Fe, Fe3B, and Fe2B. In the case of Fe80B20 amorphous alloy ribbons produced by melt-spinning technique eutectic crystallization is commonly observed and results in the crystalline phases: α-Fe and Fe3B. This kind of crystallization was not observed in the chemically prepared samples. The metastable tetragonal Fe3B phase transformed completely into α-Fe and Fe2B after annealing at 973 K for one hour.  相似文献   

9.
对纳米晶Fe73.5Cu1Mo3Si13.5B9合金的原始制备态和各退火态样品进行了室温Mossbauer谱研究,结果表明晶化态的合金存在α-Fe(Si)微晶相和晶界的非晶相。晶相和非晶相内场和面积随退火温度的变化是退火时Cu,Mo,B等成分的扩散和在各相中的再分配引起的。最佳磁性能对应非晶相中的铁量占合金铁总量的30%左右,超微晶合金的双相无规各向异性模型表明,一定量的非晶相对保持纳米晶优异的软 关键词:  相似文献   

10.
Ultrafine Fe?B amorphous alloy powders were prepared by reducing Fe2+ ions using KBH4 and NaBH4 in aqueous solution. Adjusting technological factors, the amorphous powders around the composition of Fe65B35 can be easily obtained, but in the vicinity of eutectic point (Fe80B20) a certain amount of α-Fe often appears in the samples. From the Mössbauer spectrum, the crystallization products of the Fe63B37 amorphous powder are α-Fe and Fe2B phases. The measurement of11B spin echo nuclear magnetic resonance (NMR) at 8K showed that Fe2B-like and Fe3B-like short range orders (SRO) exist in the amorphous powder of Fe76B24.  相似文献   

11.
56Fe,57Fe,10B and11B isotopes were used for binary alloys. The signals of B (40,5 MHz) and Fe (43 MHz) from α-Fe in binary Fe−B crystalline and amorphous alloys were found besides the signals of these nuclei in t-and o-phase or clusters like these phases. The NMR on (51)V impurity nuclei in Fe−B alloys was used as well. Only amorphous Fe-(<15 at.%B) alloys had the clusters with o-, t-Fe3B and α-Fe short range order.  相似文献   

12.
The substitution of aluminum by boron in the Fe70Al30 system prepared by high energy ball milling is studied when the B content ranged from 0 up to 20 at. %, and the milling times were 24, 48 and 72 h. X-ray diffraction (XRD) patterns of Fe70Al30 showed a predominant bcc structural phase with a lattice parameter larger than that of α-Fe. A second (tetragonal) phase arose with the addition of boron. It is associated to the existence of (Fe, Al)2B, although the values of the lattice parameters are slightly different from those found in the literature. This phase shows high stability; its lattice parameters and the Mössbauer parameters do not show notable variations, either with milling time or composition. It was also evidenced that an increase of boron content and of milling time produced a decrease of the lattice parameter of the Fe-Al bcc structure. This is in agreement with the small atomic radius of boron in comparison with that of aluminum. This also allows boron to occupy interstitial sites in the lattice, increasing the grain size and giving rise to the ductile character of the alloy. On the other hand, 300 K transmission Mössbauer spectra (TMS) were fitted, for low boron concentrations (<8 at.%), with a hyperfine field distribution (HFD) associated with the bcc phase. For high boron content (≥8 at.%), a magnetic component related to the tetragonal phase is added and its broadened lines are attributed to the disordered character of Fe2B, probably induced by the milling process.  相似文献   

13.
The crystal, local atomic and magnetic structures of Fe75Cr10B15 alloys annealed at 440?C473°C for 5 min have been studied using X-ray diffraction and 57Fe M?ssbauer spectroscopy. At the annealing temperature T a = 440°C, nanocrystals of the ??-Fe phase (??1%) precipitate in the amorphous matrix of the alloy. The complete crystallization of the amorphous alloy occurs at T a = 473°C with the formation of ??-Fe nanocrystals 26 ± 2 nm in size and nanocrystals of tetragonal boride t-Fe3B 47 ± 2 nm in size. It has been found that chromium atoms are located in nanocrystals of the ??-Fe and y-Fe3B types. The distribution functions of hyperfine fields in the nanocrystalline Fe75Cr10B15 alloy reconstructed from the M?ssbauer spectra (at T a = 473°C) show that there are three allowed states of iron atoms in the ??-Fe phase and three equally probable crystallographic nonequivalent states of iron in the t-(Fe,Cr)3B phase. The chromium concentration x in the ??-Fe(Cr) phase is found to be ??10 at %. The substitution of chromium atoms for iron atoms in t-Fe3B substantially decreases local magnetic moments of the iron atoms.  相似文献   

14.
非晶合金Fe78Si9B13在脉冲电流作用下的单相晶化   总被引:3,自引:0,他引:3       下载免费PDF全文
对非晶合金Fe78Si9B13进行了超短脉冲电流处理,实现了晶化时α-Fe(Si)单相结构析出.可以认为,脉冲电流作用时,电子运动与非晶中空位型结构缺陷间的周期性排斥效应促进了类金属原子从非晶结构单元中析出,使Fe(Si)原子局部富集,导致基体金属相在较低温度下优先成核.而在空位的定向迁移的同时,将伴随B原子的扩散,则B原子局域富集,Fe-B化合物的形核析出就要受到这两个因素的抑制 关键词:  相似文献   

15.
In this review, we summatize recent developments in nuclear magnetic resonance (NMR) studies on (Fe-B)-based crystalline and amorphous alloys, focusing on the application of NMR in identifying the existence of short-range order (SRO), determining the types of SRO, characterizing the behavior of the SRO and exploring the effect of the SRO on the magnetic properties for the Fe-B system. NMR experiments reveal that certain local environments surrounding the B atoms exist in both crystalline and amorphous Fe-B alloys. The type of SRO existing in this rapidly quenched system can be either o-Fe3B or bct-Fe3B, or a mixture, depending on the composition and processing factors, especially the carbon content and quenching speed. The SRO originates from a strong covalent bonding between the B and Fe atoms. As this interaction plays the same role in both crystalline and amorphous Fe-B alloys, the SRO which occurs in the amorphous Fe-B alloys is similar to the SRO which exists in their crystalline counterparts. NMR, in combination with magnetization measurements, provides evidence indicating that the SRO existing in the amorphous Fe-B alloys has a significant effect on their soft magnetic properties and that different types of SRO may act differently, thus providing an opportunity to improve the magnetic properties by changing the SRO. In connection with reviewing the achievements of NMR studies in recent years, brief comments concerning the advantages and potential of NMR experiments in the investigation of other magnetically-ordered materials will also be presented.  相似文献   

16.
The short range order (SRO) of amorphous Fe80B20?xCx (X=0, 2, 4, 7, 9) alloys has been investigated by means of Mössbauer effect (ME) and nuclear magnetic resonance (NMR). Both the amorphous samples and the samples annealed at lower temperatures (693–713K) for a short time (10 minutes) were used. The Mössbauer measurement shows that the experimental spectra of annealed samples consist of the subspectra of α-Fe and bct-Fe3B for X=0, While of α-Fe, bct-Fe3B and o-Fe3 (B, C) for X=2, 4, 7, 9. Moreover, the relative intensities of the subspectra originating from o-Fe3 (B, C) increases with carbon concentration. These results are consistent with those of NMR very well.  相似文献   

17.
Conversion Electron Mössbauer Spectroscopy (CEMS) studies are reported for as-cut and laser melted surfaces of single phase crystalline Fe2Y, Fe23Y6, Fe2Zr, Fe2B and FeB ingots. Disorder and the appearance of a new phase with a low value of the room temperature hyperfine field was observed for the Fe?Y and Fe2Zr ingots even on the as-cut surfaces due to the mechanical processing. In case of these ingots surface melting by ns laser pulses resulted in the formation of amorphous alloys. In case of the Fe?B ingots the formation of amorphous phase by laser melting was observed for Fe2B only, while in case of FeB the low temperature α-FeB modification appeared both, for mechanical processing and laser melting.  相似文献   

18.
The effect of hydrogenation on the short-range order of amorphous Fe2Er and Fe2Ce alloys has been investigated by Mössbauer, X-ray and magnetization measurements. The hydrogenation leads to drastic changes in the short-range order. The results of Mössbauer measurements show two different distributions of magnetic hyperfine fields for amorphous Fe2CeH4 alloys (a-Fe2CeH4). For a-Fe2ErH3 alloys we found drastic changes in magnetic structure, which is different from the well-known magnetic structures.  相似文献   

19.
本文研究了用单辊急冷方法制备的非晶态合金Nd4Fe96-xBx的晶化,以及热处理对其硬磁性和相组成的影响,发现非晶态合金Nd4Fe96-xBx的晶化温度比相同B含量的非晶态合金Fe100-xBx高120—190K,X射线衍射和热磁测量表明,15≤x≤25的样品晶化相是由Nd2Fe14B(T 关键词:  相似文献   

20.
In this paper, compact bulk nanocomposite Nd2Fe14B/α-Fe magnetic materials were prepared by hot extrusion of amorphous and nanocrystalline powders, which were prepared by high-energy ball-milling (HEBM) of the Nd2Fe14 B-type hard magnetic phase with 20 vol% of α-Fe as soft magnetic phase. The extrusion temperature has important influence on magnetic properties and microstructure of magnetic materials. The results show that the grain size of Nd2Fe14B and α-Fe phase increases steadily with increasing extrusion temperature. Furthermore, optimal extrusion temperature of 1223 K occurs, at which the highest magnetic properties and relative density can be obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号