首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influences of differential diffusion rates of heat and mass on the transport of the variances of Favre fluctuations of reaction progress variable and non-dimensional temperature have been studied using three-dimensional simplified chemistry based Direct Numerical Simulation (DNS) data of statistically planar turbulent premixed flames with global Lewis number ranging from Le?= 0.34 to 1.2. The Lewis number effects on the statistical behaviours of the various terms of the transport equations of variances of Favre fluctuations of reaction progress variable and non-dimensional temperature have been analysed in the context of Reynolds Averaged Navier Stokes (RANS) simulations. It has been found that the turbulent fluxes of the progress variable and temperature variances exhibit counter-gradient transport for the flames with Lewis number significantly smaller than unity whereas the extent of this counter-gradient transport is found to decrease with increasing Lewis number. The Lewis number is also shown to have significant influences on the magnitudes of the chemical reaction and scalar dissipation rate contributions to the scalar variance transport. The modelling of the unclosed terms in the scalar variance equations for the non-unity Lewis number flames have been discussed in detail. The performances of the existing models for the unclosed terms are assessed based on a-priori analysis of DNS data. Based on the present analysis, new models for the unclosed terms of the active scalar variance transport equations are proposed, whenever necessary, which are shown to satisfactorily capture the behaviours of unclosed terms for all the flames considered in this study.  相似文献   

2.
A new monotonic scheme for the approximation of steady scalar transport is formulated and implemented within a collocated finite-volume/pressure-correction algorithm for general turbulent flows in complex geometries. The scheme is essentially a monotonic implementation of the quadratic QUICK interpolation and uses a continuous and compact limiter to secure monotonicity. The principal purpose is to allow an accurate and fully bounded, hence stable, approximation of turbulence convection in the context of two-equation eddy viscosity and Reynolds stress transport modelling of two- and three-dimensional flows, both subsonic and transonic. Among other benefits, this capability permits an assessment to be made of the adequacy of approximating turbulence convection with first-order upwind schemes in conjunction with higher-order formulations for mean-flow properties—a widespread practice. The performance characteristics of the bounded scheme are illustrated by reference to computations for scalar transport, for a transonic flow in a Laval nozzle, for one separated laminar flow and for two separated turbulent flows computed with a non-linear RNG model and full Reynolds stress closure.  相似文献   

3.
Two-equation models that treat the transport equations for two variables are typical models for the Reynolds-averaged Navier–Stokes equation. Compared to the equation for the turbulent kinetic energy, the equation for the second variable such as the dissipation rate does not have a theoretical analogue. In this work, the exact transport equation for the eddy diffusivity was derived and examined for better understanding turbulence and improving two-equation models. A new length scale was first introduced, which involves the response function for the scalar fluctuation. It was shown that the eddy diffusivity can be expressed as the correlation between the velocity fluctuation and the new length scale. The transport equations for the eddy diffusivity and the length-scale variance were derived theoretically. Statistics such as terms in the transport equations were evaluated using the direct numerical simulation of turbulent channel flow. It was shown that the streamwise component of the eddy diffusivity is greater than the other two components in the whole region. In the transport equation for the eddy diffusivity, the production term due to the Reynolds stress is a main positive term, whereas the pressure–length-gradient correlation term plays a role of destruction. It is expected that the analysis of the transport equations is helpful in developing better turbulence models.  相似文献   

4.
A Reynolds-averaged simulation based on the vortex-in-cell (VIC) and the transport equation for the probability density function (PDF) of a scalar has been developed to predict the passive scalar field in a two-dimensional spatially growing mixing layer. The VIC computes the instantaneous velocity and vorticity fields. Then the mean-flow properties, i.e. the mean velocity, the root-mean-square (rms) longitudinal and lateral velocity fluctuations, the Reynolds shear stress, and the rms vorticity fluctuations are computed and used as input to the PDF equation. The PDF transport equation is solved using the Monte Carlo technique. The convection term uses the mean velocities from the VIC. The turbulent diffusion term is modeled using the gradient transport model, in which the eddy diffusivity, computed via the Boussinesq's postulate, uses the Reynolds shear stress and gradients of mean velocities from the VIC. The molecular mixing term is closed by the modified Curl model.

The computational results were compared with two-dimensional experimental results for passive scalar. The predicted turbulent flow characteristics, i.e. mean velocity and rms longitudinal fluctuations in the self-preserving region, show good agreement with the experimental measurements. The profiles of the mean scalar and the rms scalar fluctuations are also in reasonable agreement with the experimental measurements. Comparison between the mean scalar and the mean velocity profiles shows that the scalar mixing region extends further into the free stream than does the momentum mixing region, indicating enhanced transport of scalar over momentum. The rms scalar profiles exhibit an asymmetry relative to the concentration centerline, and indicate that the fluid on the high-speed side mixes at a faster rate than the fluid on the low-speed side. The asymmetry is due to the asymmetry in the mixing frequency cross-stream profiles. Also, the PDFs have peaks biased toward the high-speed side.  相似文献   

5.
A two-scale second-moment turbulence closure has been derived based on the weighted integration of the dynamic equation for the covariance spectrum. The goal is to close the Reynolds stress equations with two additional scalar equations that provide separately the scales of the spectral energy transfer and of the turbulence energy dissipation rate. Such a model should provide better prediction of nonequilibrium turbulent flows. The derivation consists of analytical integration of the wave-number-weighted covariance spectrum using a model of the spectral equations with an assumed simple representation of the shape of the energy spectrum. The resulting closure consists of a set of three tensorial equations, one for the Reynolds stress and two for length scale tensors, the latter representing the energy containing- and dissipative eddies respectively. The trace of the two tensor-scale equations leads to a set of two scalar scale parameters. In the equilibrium limit, the model reduces to the standard second-moment single-scale closure. The approach makes it also possible to derive the scale equations in a more systematic manner as compared with the common single-scale and other multi-scale models. The performance of the model in capturing the scale dynamics is illustrated by predictions of several generic homogeneous and inhomogeneous unsteady flows, demonstrating the expected response of the two scale equations. PACS 03.50.De, 04.20-q, 42.65-k  相似文献   

6.
Simulations of turbulent CH4-air counterflow flames are presented, obtained in terms of zero and two-dimensional first-order Conditional Moment Closure (CMC) to study the flame structure and extinction limits. The CMC equation with detailed chemistry is solved without the need for operator splitting, while the accompanying flow field is determined using a commercial CFD software employing a Reynolds stress turbulence model and additional transport equations for the turbulent scalar flux and for the mean scalar dissipation rate. Two detailed chemical mechanisms and different conditional scalar dissipation rate models have been examined and small differences were found.The first-order CMC captures the overall structure of the counterflow flame accurately for the unconditional averages. The calculated conditional averages behave as if the scalar dissipation rate were under-predicted, although a comparison with measurement of the conditional scalar dissipation rate is reasonable. The calculated extinction velocity is found to be much higher than the experimental value, but the trend of increasing extinction velocity with air dilution of the fuel stream is captured well. The discrepancies with the data are mostly attributed to the neglect of conditional fluctuations.  相似文献   

7.
A Reynolds stress model for the numerical simulation of uniform 3D turbulent open‐channel flows is described. The finite volume method is used for the numerical solution of the flow equations and transport equations of the Reynolds stress components. The overall solution strategy is the SIMPLER algorithm, and the power‐law scheme is used to discretize the convection and diffusion terms in the governing equations. The developed model is applied to a flow at a Reynolds number of 77000 in a rectangular channel with a width to depth ratio of 2. The simulated mean flow and turbulence structures are compared with measured and computed data from the literature. The computed flow vectors in the plane normal to the streamwise direction show a small vortex, called inner secondary currents, located at the juncture of the sidewall and the free surface as well as the free surface and bottom vortices. This small vortex causes a significant increase in the wall shear stress in the vicinity of the free surface. A budget analysis of the streamwise vorticity is carried out. It is found that both production terms by anisotropy of Reynolds normal stress and by Reynolds shear stress contribute to the generation of secondary currents. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
This paper investigates the boundary layer flow of the Maxwell fluid around a stretchable horizontal rotating cylinder under the influence of a transverse magnetic field. The constitutive flow equations for the current physical problem are modeled and analyzed for the first time in the literature. The torsional motion of the cylinder is considered with the constant azimuthal velocity E. The partial differential equations (PDEs) governing the torsional motion of the Maxwell fluid together with energy transport are simplified with the boundary layer concept. The current analysis is valid only for a certain range of the positive Reynolds numbers. However, for very large Reynolds numbers, the flow becomes turbulent. Thus, the governing similarity equations are simplified through suitable transformations for the analysis of the large Reynolds numbers. The numerical simulations for the flow, heat, and mass transport phenomena are carried out in view of the bvp4c scheme in MATLAB. The outcomes reveal that the velocity decays exponentially faster and reduces for higher values of the Reynolds numbers and the flow penetrates shallower into the free stream fluid. It is also noted that the phenomenon of stress relaxation, described by the Deborah number, causes to decline the flow fields and enhance the thermal and solutal energy transport during the fluid motion. The penetration depth decreases for the transport of heat and mass in the fluid with the higher Reynolds numbers. An excellent validation of the numerical results is assured through tabular data with the existing literature.  相似文献   

9.
Itô's stochastic differential equations theory is a common approach to analysis of stochastic phenomena in various systems. In many applications, an important feature of the systems is the flicker effect. It is well known that it cannot be described with linear autonomous scalar equations of the above kind. The reason is that the flicker effect is usually associated with a correlation time which is much greater than the correlation time in the linear case. In the present work, we discuss modelling of the long correlation time with the help of non-linear autonomous scalar Itô's stochastic differential equation which includes non-linear drift. The expression for the asymptotic correlation time as time separation tends to zero is derived in terms of the equation. We formulate the condition for this time to be long in the above sense. It is pointed out that this condition can hold if the nonlinear damping is reduced compared to the linear case. These results are illustrated with an example of the equation with non-linear drift of a specific form.  相似文献   

10.
A modified Reynolds stress turbulence model for the pressure rate of strain can be derived for dispersed two-phase flows taking into account gas-particle interaction. The transport equations for the Reynolds stresses as well as the equation for the fluctuating pressure can be derived starting from the multiphase Navier–Stokes equations. The unknown pressure rate of strain correlation in the Reynolds stress equations is then modelled by considering the multiphase equation for the fluctuating pressure. This leads to a multiphase pressure rate of strain model. The extra particle interaction source terms occurring in the model for the pressure rate of strain can be constructed easily, with no noticeable extra computational cost. Eulerian–Lagrangian simulation results of a turbulent dispersed two-phase jet are presented to show the differences in results with and without the new two-way coupling terms.  相似文献   

11.
A dynamic subgrid-scale tensorial Eddy viscosity model   总被引:1,自引:0,他引:1  
In the Navier-Stokes equations the removal of the turbulent fluctuating velocities with a frequency above a certain fixed threshold, employed in the Large Eddy Simulation (LES), causes the appearance of a turbulent stress tensor that requires a number of closure assumptions. In this paper insufficiencies are demonstrated for those closure models which are based on a scalar eddy viscosity coefficient. A new model, based on a tensorial eddy viscosity, is therefore proposed; it employs the Germano identity [1] and allows dynamical evaluation of the single required input coefficient. The tensorial expression for the eddy viscosity is deduced by removing the widely used scalar assumption of the high-frequency viscous dissipation and replacing it by its tensorial counterpart arising in the balance of the Reynolds stress tensor. The numerical simulations performed for a lid driven cavity flow show that the proposed model allows to overcome the drawbacks encountered by the scalar eddy viscosity models. Received November 25, 1997  相似文献   

12.
A technique to determine the axisymmetric elastoplastic state of thin shells with allowance for the third invariant of the stress deviator is developed. The technique is based on the theory of thin shells that takes into account transverse shear and torsional strains. Plastic equations that relate the components of the stress tensor in Eulerian coordinates with the linear components of the finite-strain tensor are used as constitutive equations. The nonlinear scalar functions in the constitutive equations are found from base tests on tubular specimens under proportional loading for different stress modes. The boundary-value problem is solved by numerically integrating a system of ordinary differential equations  相似文献   

13.
A rapidly decorrelating velocity field model is used to derive stochastic partial differential equations (SPDE) allowing one to compute the modeled one-point joint probability density function of turbulent reactive scalars. Those SPDEs are shown to be hyperbolic advection/reaction equations. They are dealt with in a generalized sense, so that discontinuities in the scalar fields can be treated. The Eulerian Monte Carlo (EMC) method thus defined is coupled with a RANS solver and applied to the computation of a turbulent premixed methane flame over a backward facing step.  相似文献   

14.
The probability density function (PDF) formulation of one scalar field undergoing diffusion, turbulent convection and chemical reaction is restated in terms of stochastic fields. These fields are smooth in space as they have a length scale similar to that of the PDF. Their evolution is described by a set of stochastic partial differential equations, which are solved using a finite volume scheme with a stochastic source term. The application of this methodology to a particular flow is shown first for a linear source term, with exact analytical solution for the mean and standard deviation, and then for a nonlinear reaction.  相似文献   

15.
16.
We study compressible turbulent flow in a circular pipe at computationally high Reynolds number. Classical related issues are addressed and discussed in light of the DNS data, including validity of compressibility transformations, velocity/temperature relations, passive scalar statistics, and size of turbulent eddies. Regarding velocity statistics, we find that Huang’s transformation yields excellent universality of the scaled Reynolds stresses distributions, whereas the transformation proposed by Trettel and Larsson (2016) yields better representation of the effects of strong variation of density and viscosity occurring in the buffer layer on the mean velocity distribution. A clear logarithmic layer is recovered in terms of transformed velocity and wall distance coordinates at the higher Reynolds number under scrutiny (Reτ ≈ 1000), whereas the core part of the flow is found to be characterized by a universal parabolic velocity profile. Based on formal similarity between the streamwise velocity and the passive scalar transport equations, we further propose an extension of the above compressibility transformations to also achieve universality of passive scalar statistics. Analysis of the velocity/temperature relationship provides evidence for quadratic dependence which is very well approximated by the thermal analogy proposed by Zhang et al. (2014). The azimuthal velocity and scalar spectra show an organization very similar to canonical incompressible flow, with a bump-shaped distribution across the flow scales, whose peak increases with the wall distance. We find that the size growth effect is well accounted for through an effective length scale accounting for the local friction velocity and for the local mean shear.  相似文献   

17.
The Crow constraint on time-dependent turbulence models is generalized to effects of second order in the strain rate. For simple shear flow, this generalization requires agreement of the time-dependent normal stress deviators with the short-time rapid distortion limit and with long-time equilibrium data. A model consistent with these requirements is proposed based on a perturbative solution of the equations of the direct interaction approximation for shear flow. It requires a decomposition of the Reynolds stress into tensor components which satisfy coupled linear relaxation equations. This approach to time-dependent turbulence modeling based on analytical theories offers an alternative to the standard ones, in which various hypotheses are introduced to close correlations in the exact transport equation for second-order single-point moments.Partial financial support provided by ONR Contract N00014-94-1-0124 is gratefully acknowledged.  相似文献   

18.
19.
朱婧  郑连存  张志刚 《力学学报》2012,44(2):451-455
从理论上研究了具有延伸柱面的同轴圆柱间滑移流动问题.通过引入适当的相似变换将控制方程组转化为一类非线性边值问题, 利用同伦分析方法首次获得问题的近似解析解, 分析讨论滑移参数、雷诺数和内外筒半径比对流动的影响.结果表明: 滑移边界参数对剪切应力有较大的影响, 滑移边界小的流体对壁面和边界层内流场施加了更大的剪切力; 增大雷诺数Re, 能增大内筒的壁面剪切力和扭矩; 内外筒半径比对流动结构也有较大的影响, 内筒半径固定, 增大外筒半径能够减少内筒的纵向剪切力.   相似文献   

20.
The slip flow due to a stretching cylinder is studied. A similarity transform reduces the Navier-Stokes equations to a set of non-linear ordinary differential equations. Asymptotic solutions for large Reynolds number and small slip show the problem can be related to the existing two-dimensional stretching cases. Due to algebraic decay, the equations are further transformed through a compressed variable, and then integrated numerically. It is found that slip greatly reduces the magnitudes of the velocities and the shear stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号