首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Multicell tumour spheroids (MTS) of V-79 Chinese hamster cells have been used to study the role of a number of treatment and microenvironmental parameters in the modification of tumour response to Photodynamic Therapy (PDT) using visible light in combination with the photosensitizing compound dihematoporphyrin ether (DHE). The kinetics of DHE uptake into MTS, determined by fluorimetry of extracted porphyrins, indicate that after extended incubation (i.e. 24 h) the mean cellular DHE content in larger (˜300 μ.m and 400 u.m) MTS is significantly less than that for smaller (˜200 μm) MTS, consistent with a hypothesis that DHE uptake into the internal regions of spheroids is diffusion-limited. The response of spheroids to PDT, as assessed by the endpoint of growth delay, indicates that the kinetics of spheroid volume alteration and cell loss, as well as the potential for regfrrwth, are markedly dependent on both the drug and light exposure levels used. The oxygen dependence of this response has been investigated after light irradiation of spheroid cultures equilibrated with either 21% O2 (i.e. air) or 0% 02 (i.e. N2). While treatment in air results in significant growth delay, the growth kinetics of DHE-treated spheroids irradiated under N2 were essentially unchanged from those of untreated spheroids. These observations clearly demonstrate an important role for oxygen, at the time of irradiation, in determining the response of spheroids to PDT.  相似文献   

2.
In the present work, we study the photodynamic action of cercosporin (cerco), a naturally occurring photosensitizer, on human cancer multicellular spheroids. U87 spheroids exhibit double the uptake of cerco than T47D and T98G spheroids as shown by flow cytometry on the single cell level. Moreover, cerco is efficiently internalized by cells throughout the spheroid as shown by confocal microscopy, for all three cell lines. Despite their higher cerco uptake, U87 spheroids show the least vulnerability to cerco-PDT, in contrast to the other two cell lines (T47D and T98G). While 300 μm diameter spheroids consistently shrink and become necrotic after cerco PDT, bigger spheroids (>500 μm) start to regrow following blue-light PDT and exhibit high viability. Cerco-PDT was found to be effective on bigger spheroids reaching 1mm in diameter especially under longer exposure to yellow light (~590 nm). In terms of metabolism, T47D and T98G undergo a complete bioenergetic collapse (respiration and glycolysis) as a result of cerco-PDT. U87 spheroids also experienced a respiratory collapse following cerco-PDT, but retained half their glycolytic activity.  相似文献   

3.
Photodynamic therapy of human glioma spheroids using 5-aminolevulinic acid   总被引:7,自引:0,他引:7  
The response of human glioma spheroids to 5-aminolevulinic acid (ALA)-mediated photodynamic therapy (PDT) is investigated. A two-photon fluorescence microscopy technique is used to show that human glioma cells readily convert ALA to protoporphyrin IX throughout the entire spheroid volume. The central finding of this study is that the response of human glioma spheroids to ALA-mediated PDT depends not only on the total fluence, but also on the rate at which the fluence is delivered. At low fluences (< or = 50 J cm-2), lower fluence rates are more effective. At a fluence of 50 J cm-2, near-total spheroid kill is observed at fluence rates of as low as 10 mW cm-2. The fluence rate effect is not as pronounced at higher fluences (> 50 J cm-2), where a favorable response is observed throughout the range of fluence rates investigated. The clinical implications of these findings are discussed.  相似文献   

4.
5.
Shiqi Chang  Jing Wen  Yue Su  Huipeng Ma 《Electrophoresis》2022,43(13-14):1466-1475
At present, the probability that a new anti-tumor drug will eventually succeed in clinical trials is extremely low. In order to make up for this shortcoming, the use of a three-dimensional (3D) cell culture model for secondary screening is often necessary. Cell spheroid is the easiest 3D model tool for drug screening. In this study, the microfluidic chip with a microwell array was manufactured, which could allow the formation of tumor spheroids with uniform size and easily retrieve cell spheroids from the chip. Cell spheroids were successfully cultured for over 15 days and the survival rate was as high as 80%. Subsequently, cellular response to the ursolic acid (UA) was observed on the chip. Compared to the monolayer culture cells in vitro, the tumor spheroids showed minor levels of epithelial-mesenchymal transition fluctuation after drug treatment. The mechanism of cell spheroid resistance to UA was further verified by detecting the expression level of upstream pathway proteins. But the invasive ability of tumor spheroids was attenuated when the duration of action of UA extended. The anti-cancer effect of UA was innovatively evaluated on breast cancer by using the microfluidic device, which could provide a basis and direction for future preclinical research on UA.  相似文献   

6.
Multicellular tumor spheroid (MCTS) mimics microenvironment for tumor formation and provides predictive insight for in vivo tests. The hanging drop (HD) method of spheroid generation is cost effective, but it is limited by a long time duration for spheroid development and a low rate of formation of larger spheroids. Toward addressing those limitations, thermoresponsive copolymers with poly(N‐isopropylacrylamide) (p(NIPA)) backbone are developed, to be used as additives in the MCTS formation via HD method. Upon investigation it is found that in the presence of the polymer, robust and compact spheroids are formed in a short duration of 48 h. Larger spheroids (350–600 µm) can be formed by increasing the number of cells. Spheroids are characterized for their 3D shape and different cellular layers, and drug uptake study is done to prove the efficacy of the spheroids generated in drug screening.  相似文献   

7.
Flow cytometry (FCM) has been used to investigate the intracellular fluorescence of hematoporphyrin derivative (HPD) in monolayer and spheroid cultures of WiDr cells. For exponentially-growing monolayer cultures mean cellular fluorescence was directly proportion to the external HPD levels in the range 5-100 micrograms ml-1 (r = 0.99). Heterogeneity of cellular fluorescence was quantified by determining the ratio of the fluorescence value below which were observed values for 98% of the cell population compared to the fluorescence value for 2%. In exponentially-growing cultures, decreasing levels of HPD in the medium led to an increase in the 98:2% ratio, i.e. an increase in heterogeneity of intracellular drug levels. The growth of cells as multicellular spheroids confers a spheroid-size-dependent resistance to photodynamic treatment. With increasing spheroid size (100, 250, 500, 750 and 1000 microns diam.) there was a decrease in mean intracellular HPD levels and a large linear increase in the 98:2% ratio (r = 0.94).  相似文献   

8.
Jin HJ  Cho YH  Gu JM  Kim J  Oh YS 《Lab on a chip》2011,11(1):115-119
This paper presents a multicellular spheroid chip capable of forming and extracting three-dimensional (3D) spheroids using removable cell trapping barriers. Compared to the conventional macro-scale spheroid formation methods, including spinning, hanging-drop, and liquid-overlay methods, the recent micro-scale spheroid chips have the advantage of forming smaller spheroids with better uniformity. The recent micro spheroid chips, however, have difficulties in extracting the spheroids due to fixed cell trapping barriers. The present spheroid chip, having two PDMS layers, uses removable cell trapping barriers, thereby making it easy to form and extract uniform and small-sized spheroids. We have designed, fabricated and characterized a 4 × 1 spheroid chip, where membrane cell trapping barriers are inflated at a pressure of 50 kPa for spheroid formation and are deflated at zero gauge pressure for simple and safe extraction of the spheroids formed. In this experimental study, the cell suspension of non-small lung cancer cells, H1650, is supplied to the fabricated spheroid chip in the pressure range 145-155 Pa. The fabricated spheroid chips collect the cancer cells in the cell trapping regions from the cell suspension at a concentration of 2 × 10(6) ml(-1), thus forming uniform 3D spheroids with a diameter of 197.2 ± 11.7 μm, after 24 h incubation at 5% CO(2) and 37°C environment. After the removal of the cell trapping barriers, the spheroids formed were extracted through the outlet ports at a cell inlet pressure of 5 kPa. The cells in the extracted spheroids showed a viability of 80.3 ± 7.7%. The present spheroid chip offers a simple and effective method of obtaining uniform and small-sized 3D spheroids for the next stage of cell-based biomedical research, such as gene expression analysis and spheroid inoculation in animal models.  相似文献   

9.
《Electrophoresis》2017,38(8):1206-1216
Cell‐on‐a‐chip systems have become promising devices to study the effectiveness of new anticancer drugs recently. Several microdevices for liver cancer culture and evaluation of the drug cytotoxicity have been reported. However, there are still no proven reports about high‐throughput and simple methods for the evaluation of drug cytotoxicity on liver cancer cells. The paper presents the results of the effects of the anticancer drug (5‐fluorouracil, 5‐FU) on the HepG2 spheroids as a model of liver cancer. The experiments were based on the long‐term 3D spheroid culture in the microfluidic system and monitoring of the effect of 5‐FU at two selected concentrations (0.5 mM and 1.0 mM). Our investigations have shown that the initial size of the spheroids has influence on the drug effect. With the increase of the spheroids diameter, the drug resistance (for the two tested 5‐FU concentrations) decreases. This phenomenon was observed both through cells metabolism analysis, as well as changes in spheroids sizes. In our research, we have shown that the lower 5‐FU (0.5 mM) concentration causes higher decrease in HepG2 spheroids viability. Moreover, due to the microsystem construction, we observe the drug resistance effect (10th day of culture) regardless of the initial size of the created spheroids and the drug concentration.  相似文献   

10.
Hypoxic microenvironment and limited penetration of photosensitizers within solid tumors are two crucial factors that restrict photodynamic therapy (PDT) efficacy. Herein, a new fluorinated mixed micelle ( M60@PFC-Ce6 ) is developed as a tumor-penetrating and oxygen-enriching nanoplatform, which consists of chlorin e6 (Ce6) and perfluorocarbons (PFCs) co-loaded into fluorinated micelles to relieve hypoxia conditions as well as folate as targeting ligand that facilitates the selective biodistribution within tumor solids. The incorporation of fluorinated copolymers into mixed micelles exhibits not only a great increase in the oxygen-loading capacity, but also improves the stability of liquid PFCs emulsion within micelles without leakage. M60@PFC-Ce6 shows excellent oxygen delivery capability, good intracellular reactive oxygen species (ROS) generation, and superior phototoxicity in vitro for both 2D monolayer of cells and 3D multicellular spheroid model. These results indicate the enriched oxygen delivery and increased cellular uptake resulting from folate-targeted ability to enhance ROS production and PDT efficacy. The penetration study of M60@PFC-Ce6 into a 3D spheroid confirms that small micellar size and folate-conjugation are beneficial for micelles to penetrate and accumulate within spheroids. Thus, a new nanoplatform with enriched oxygen-carrying amounts, better drug penetration, and stable micellar properties that relieve tumor hypoxia and improve PDT efficacy is provided.  相似文献   

11.
C Kim  JH Bang  YE Kim  SH Lee  JY Kang 《Lab on a chip》2012,12(20):4135-4142
This paper proposes a new cytotoxicity assay in a microfluidic device with microwells and a distributive microfluidic channel network for the formation of cancer cell spheroids. The assay can generate rapid and uniform cell clusters in microwells and test in situ cytotoxicity of anticancer drugs including sequential drug treatments, long term culture of spheroids and cell viability assays. Inlet ports are connected to the microwells by a hydraulic resistance network. This uniform distribution of cell suspensions results in regular spheroid dimensions. Injected cancer cells were trapped in microwells, and aggregated into tumor spheroids within 3 days. A cytotoxicity test of the spheroids in microwells was subsequently processed in the same device without the extraction of cells. The in situ cytotoxicity assay of tumor spheroids in microwells was comparable with the MTT assay on hanging drop spheroids using a conventional 96-well plate. It was observed that the inhibition rate of the spheroids was less than that in the 2D culture dish and the effect on tumor spheroids was different depending on the anticancer drug. This device could provide a convenient in situ assay tool to assess the cytotoxicity of anticancer drugs on tumor spheroids, offering more information than the conventional 2D culture plate.  相似文献   

12.
The phototoxic effect of meso-tetra-hydroxyphenyl-chlorin (mTHPC)-mediated photodynamic therapy (PDT) on human microvascular endothelial cells (hMVEC) was compared with that on human fibroblasts (BCT-27) and two human tumor cell lines (HMESO-1 and HNXOE). To examine the relationship between intrinsic phototoxicity and intracellular mTHPC content, we expressed cell survival as a function of cellular fluorescence. On the basis of total cell fluorescence, HNXOE tumor cells were the most sensitive and BCT-27 fibroblasts the most resistant, but these differences disappeared after correcting for cell volume. Endothelial cells were not intrinsically more sensitive to mTHPC-PDT than tumor cells or fibroblasts. Uptake of mTHPC in hMVEC increased linearly to at least 48 h, whereas drug uptake in the other cell lines reached a maximum by 24 h. No difference in drug uptake was seen between the cell lines during the first 24 h, but by 48 h hMVEC had a 1.8- to 2.8-fold higher uptake than other cell lines. Endothelial cells showed a rapid apoptotic response after mTHPC-mediated PDT, whereas similar protocols gave a delayed apoptotic or necrotic like response in HNXOE. We conclude that endothelial cells are not intrinsically more sensitive than other cell types to mTHPC-mediated PDT but that continued drug uptake beyond 24 h may lead to higher intracellular drug levels and increased photosensitivity under certain conditions.  相似文献   

13.
A common method of three-dimensional (3D) cell cultures is embedding single cells in Matrigel. Separated cells in Matrigel migrate or grow to form spheroids but lack cell-to-cell interaction, which causes difficulty or delay in forming mature spheroids. To address this issue, we proposed a 3D aggregated spheroid model (ASM) to create large single spheroids by aggregating cells in Matrigel attached to the surface of 96-pillar plates. Before gelling the Matrigel, we placed the pillar inserts into blank wells where gravity allowed the cells to gather at the curved end. In a drug screening assay, the ASM with Hepatocellular carcinoma (HCC) cell lines showed higher drug resistance compared to both a conventional spheroid model (CSM) and a two-dimensional (2D) cell culture model. With protein expression, cytokine activation, and penetration analysis, the ASM showed higher expression of cancer markers associated with proliferation (p-AKT, p-Erk), tight junction formation (Fibronectin, ZO-1, Occludin), and epithelial cell identity (E-cadherin) in HCC cells. Furthermore, cytokine factors were increased, which were associated with immune cell recruitment/activation (MIF-3α), extracellular matrix regulation (TIMP-2), cancer interaction (IL-8, TGF-β2), and angiogenesis regulation (VEGF-A). Compared to CSM, the ASM also showed limited drug penetration in doxorubicin, which appears in tissues in vivo. Thus, the proposed ASM better recapitulated the tumor microenvironment and can provide for more instructive data during in vitro drug screening assays of tumor cells and improved prediction of efficacious drugs in HCC patients.  相似文献   

14.
The use of three-dimensional cell culture models, so-called multicellular tumor spheroids, is a special approach in experimental cancer research, because spheroids are similar to in vivo tumors in structural as well as functional sense. Cells grown in spheroids exhibit alterations of cell cycle regulation, induction of apoptosis and differentiation and can acquire multidrug resistance. In this study we investigated the protein expression in human colorectal cancer cells grown in monolayer and in spheroid cultures using proteomics. Evaluation by computer-assisted image analysis revealed overexpression of three cytokeratin 18 fragments that were generated in vivo. Cytokeratin 18 has previously been described as a target for caspase-mediated cleavage during apoptosis and our results indicate that apoptosis may take place in spheroids. Other proteins upregulated in spheroids include calreticulin precursor, a rho GDP dissociation inhibitor variant, several cytokeratins and peroxiredoxin 4. Some of these proteins have already been linked to chemoresistance and apoptotic phenomena.  相似文献   

15.
In this study, we evaluate the use of riboflavin-mediated collagen photocrosslinking as an experimental tool to modulate extracellular matrix (ECM) mechanical properties in 3D in vitro tumor models. Using this approach in conjunction with 3D pancreatic tumor spheroid transplants, we show that the extent of matrix photocrosslinking in reconstituted hydrogels with fixed protein concentration scales inversely with the extent of invasive progression achieved by cells infiltrating into the surrounding ECM from primary transplanted spheroids. Using cross-linking to manipulate the extent of invasion into ECM in conjunction with imaging-based treatment assessment, we further leverage this approach as a means for assaying differential therapeutic response in primary nodule and ECM-invading populations and compare response to verteporfin-based photodynamic therapy (PDT) and oxaliplatin chemotherapy. Treatment response data shows that invading cell populations (which also exhibit markers of increased EMT) are highly chemoresistant yet have significantly increased sensitivity to PDT relative to the primary nodule. In contrast, the oxaliplatin treatment achieves greater growth inhibition of the primary nodule. These findings may be significant in themselves, while the methodology developed here could have a broader range of applications in developing strategies to target invasive disease and/or mecahanobiological determinants of therapeutic response in solid tumors.  相似文献   

16.
A degree of resistance to photodynamic therapy (PDT) has been induced in radiation-induced fibrosarcoma-1 (RIF-1) tumor cells by repeated photodynamic treatment with Photofrin (4 or 18 h incubation) in vitro to the 0.1-1% survival level, followed by regrowth from single surviving colonies. The resistance is shown as increased cell survival in the strain designated RIF-8A, compared to the wild-type RIF-1 cells, when exposed to increasing Photofrin concentration for 18 h incubation and fixed light exposure. No difference was found between RIF-1 and RIF-8A in the uptake of Photofrin per unit cell volume at 18 h incubation. Resistance to PDT was also observed in Chinese hamster ovary-multi-drug resistant (CHO-MDR) cells compared to the wild-type CHO cells, possibly associated with decreased cellular concentration of Photofrin in the former. By contrast, the PDT-resistant RIF-8A cells did not show any cross-resistance to Adriamycin, nor was there any significant drug concentration difference between RIF-1 and RIF-8A. These findings suggest that different mechanisms are responsible for PDT-induced resistance and multi-drug resistance.  相似文献   

17.
Meso-tetra-hydroxyphenyl-chlorin (mTHPC) is one of the most potent photosensitizers currently available for clinical photodynamic therapy (PDT). However the reason or reasons for its high photodynamic efficacy remain(s) unresolved. To investigate the PDT efficacy of mTHPC vs Photofrin we use the knowledge of photophysical parameters extracted from the analysis of oxygen electrode measurements in spheroids to compute and compare their respective singlet oxygen (1O2) dose depositions. The electrode measurements indirectly report the bleaching kinetics of mTHPC and indicate that its photobleaching mechanism is consistent with 1O2-mediated reactions. mTHPC's photodegradation via 1O2 reactions is confirmed by a more direct evaluation of the spatially resolved fluorescence in confocal sections of intact spheroids during irradiation. The PDT efficacy comparisons establish that mTHPC's enhanced potency may be accounted for completely on the basis of its ability to sequester tightly in cells and its photophysical properties, in particular its higher extinction coefficient at a redshifted wavelength. We extend the efficacy comparison to include the influence of hemoglobin absorption of PDT treatment light and show that incorporating the influence of wavelength-dependent light attenuation in tissue further contributes to significantly higher efficacy for mTHPC- vs Photofrin-PDT.  相似文献   

18.
Abstract— Photodynamic therapy (PDT) is an efficient inducer of apoptosis, an active form of cell death that can be inhibited by the BCL-2 oncoprotein. The ability of BCL-2 to modulate PDT-induced apoptosis and overall cell killing has been studied in a pair of Chinese hamster ovary cell lines that differ from one another by a transfected human BCL-2 gene in one of them (Bissonnette et al., Nature 359,552–554, 1992). Cells were exposed to the phthalo-cyanine photosensitizer Pc 4 and various fluences of red light. Pc 4 uptake was identical in the two cell lines. The parental cells displayed a high incidence of apoptosis after PDT, whereas at each fluence there was a much lower incidence of apoptosis in the BCL-2-expressing cells. Apoptosis was monitored by (a) observation of 50 kbp and oligonucleosome-size DNA fragments by gel electrophoresis, (b) flow cytometry of cells labeled with fluores-cently tagged dUTP by terminal deoxynucleotidyl transferase and (c) fluorescence microscopy of acridine orange-stained cells. The time course of apoptosis varied with the PDT dose, suggesting that only after moderately high doses (> 99% loss of clonogenicity) was there a relatively synchronous and rapid entry of many cells into apoptosis. At PDT doses reducing cell survival by 90 or 99%, significant increases in apoptotic cells were found in the population after6–12 h. Clonogenic assays showed that BCL-2 protein inhibited not only apoptosis but overall cell killing as well, effecting a two-fold resistance at the 10% survival level. Thus, BCL-2 -expressing cells may be relatively resistant to PDT.  相似文献   

19.
Lee KH  No da Y  Kim SH  Ryoo JH  Wong SF  Lee SH 《Lab on a chip》2011,11(6):1168-1173
Here, we present a novel and simple process of spheroid formation and in situ encapsulation of the formed spheroid without intervention. A hemispherical polydimethylsiloxane (PDMS) micromold was employed for the formation of uniform sized spheroids and two types of nano-porous membrane were used for the control of the crosslinking agent. We characterized the transport properties of the membrane, and the selection of alginate hydrogel as a function of gelation time, alginate concentration, and membrane type. Using the developed process and micromold, HepG2 cell spheroids were successfully formed and encapsulated in alginate without replating. This method allows spheroid encapsulation with minimal damage to the spheroid while maintaining high cell viability. We demonstrate the feasibility of this method in developing a bio-artificial liver (BAL) chip by evaluating viability and function of encapsulated HepG2 spheroids. This method may be applied to the encapsulation of several aggregating cell types, such as β-cells for islet formation and stem cells for embryonic body preservation, or as a model for tumor cell growth and proliferation in a 3D hydrogel environment.  相似文献   

20.
Recombinant Chinese hamster ovary (rCHO) cells have been the most commonly used mammalian host for large-scale commercial production of therapeutic proteins. Although recent advances in 3D culture of rCHO cells is preferred to 2D monolayer culture for highly productive and robust expression of therapeutic proteins, there exists still limitation for efficient protein production. Therefore, a new cell culture system is essentially required for an efficient protein production. Here, we report on a new 3D cell culture system as a spheroid cell culture on the micropattern array for efficient production of protein by CHO cells. Particularly, cocultivation of CHO spheroids with bovine aortic endothelial cells (BAEC) as a feeder layer cells was essential to stably increase a protein production. We investigated the co-culture mechanism of functional enhancement with respect to the cell–cell interactions. Functional comparison between 2D and 3D co-cultures suggested the preferred configuration as spheroid for higher protein production. Specifically, to estimate the effect of respective cell constitution in co-cultured spheroids on the protein production per CHO cell, the number of viable cells in cell proliferation was determined with culture periods. These studies demonstrated the significant role of micropatterned BAEC as a feeder layer for the retained formation of CHO spheroids, resulting in predominantly enhanced production of proteins, although the functional enhancement of CHO cells was obtained by co-culture with BAECs in both 2D and 3D configurations. Thus, heterotypic cell communications that play indispensable roles in increasing CHO functions should be properly obtained in 3D cell configurations. Significantly, these spheroids in the serum-free medium drastically enhanced protein expression level up to sevenfold compared with CHO monospheroids, suggesting that a suitable culture conditions for heterotypic cell–cell interactions would allow improved protein secretion to occur unimpeded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号