首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis and electrochemical and photophysical studies of a series of alkyne-linked zinc-porphyrin-[60]fullerene dyads are described. These dyads represent a new class of fully conjugated donor-acceptor systems. An alkynyl-fullerene synthon was synthesized by a nucleophilic addition reaction, and was then oxidatively coupled with a series of alkynyl tetra-aryl zinc-porphyrins with 1-3 alkyne units. Cyclic and differential pulse voltammetry studies confirmed that the porphyrin and fullerene are electronically coupled and that the degree of electronic interaction decreases with increasing length of the alkyne bridge. In toluene, energy transfer from the excited zinc-porphyrin singlet to the fullerene moiety occurs, affording fullerene triplet quantum yields of greater than 90 %. These dyads exhibit very rapid photoinduced electron transfer in tetrahydrofuran (THF) and benzonitrile (PhCN), which is consistent with normal Marcus behavior. Slower rates for charge recombination in THF versus PhCN clearly indicate that charge-recombination events are occurring in the Marcus inverted region. Exceptionally small attenuation factors (beta) of 0.06+/-0.005 A(-1) demonstrate that the triple bond is an effective mediator of electronic interaction in zinc-porphyrin-alkyne-fullerene molecular wires.  相似文献   

2.
A series of zinc porphyrin–[60]fullerene dyads linked by conformation-constrained tetrasilanes and permethylated tetrasilane have been synthesized for the evaluation of the conformation effect of the tetrasilane linkers on the photoinduced electron transfer. The excited-state dynamics of these dyads have been studied using the time-resolved fluorescence and absorption measurements. The fluorescence of the zinc porphyrin moiety in each dyad was quenched by the electron transfer to the fullerene moiety. The transient absorption measurements revealed that the final state of the excited-state process was a radical ion pair with a radical cation on the zinc porphyrin moiety and a radical anion on the fullerene moiety as a result of the charge separation. The charge separation and charge recombination rates were found to show only slight conformation dependence of the tetrasilane linkers, which is characteristic for the Si-linkages.  相似文献   

3.
As part of a continuing investigation of the topological control of intramolecular electron transfer (ET) in donor-acceptor systems, a symmetrical parachute-shaped octaethylporphyrin-fullerene dyad has been synthesized. A symmetrical strap, attached to ortho positions of phenyl groups at opposing meso positions of the porphyrin, was linked to [60]-fullerene in the final step of the synthesis. The dyad structures were confirmed by (1)H, (13)C, and (3)He NMR, and MALDI-TOF mass spectra. The free-base and Zn-containing dyads were subjected to extensive spectroscopic, electrochemical and photophysical studies. UV-vis spectra of the dyads are superimposable on the sum of the spectra of appropriate model systems, indicating that there is no significant ground-state electronic interaction between the component chromophores. Molecular modeling studies reveal that the lowest energy conformation of the dyad is not the C(2)(v)() symmetrical structure, but rather one in which the porphyrin moves over to the side of the fullerene sphere, bringing the two pi-systems into close proximity, which enhances van der Waals attractive forces. To account for the NMR data, it is proposed that the dyad is conformationally mobile at room temperature, with the porphyrin swinging back and forth from one side of the fullerene to the other. The extensive fluorescence quenching in both the free base and Zn dyads is associated with an extremely rapid photoinduced electron-transfer process, k(ET) approximately 10(11) s(-)(1), generating porphyrin radical cations and C(60) radical anions, detected by transient absorption spectroscopy. Back electron transfer (BET) is slower than charge separation by up to 2 orders of magnitude in these systems. The BET rate is slower in nonpolar than in polar solvents, indicating that BET occurs in the Marcus inverted region, where the rate decreases as the thermodynamic driving force for BET increases. Transient absorption and singlet molecular oxygen sensitization data show that fullerene triplets are formed only with the free base dyad in toluene, where triplet formation from the charge-separated state is competitive with decay to the ground state. The photophysical properties of the P-C(60) dyads with parachute topology are very similar to those of structurally related rigid pi-stacked P-C(60) dyads, with the exception that there is no detectable charge-transfer absorption in the parachute systems, attributed to their conformational flexibility. It is concluded that charge separation in these hybrid systems occurs through space in unsymmetrical conformations, where the center-to-center distance between the component pi-systems is minimized. Analysis of the BET data using Marcus theory gives reorganization energies for these systems between 0.6 and 0.8 eV and electronic coupling matrix elements between 4.8 and 5.6 cm(-)(1).  相似文献   

4.
The photoinduced electron transfer in differently linked zinc porphyrin-fullerene dyads and their free-base porphyrin analogues was studied in polar and nonpolar solvents with femto- to nanosecond absorption and emission spectroscopies. A new intermediate state, different from the locally excited (LE) chromophores and the complete charge-separated (CCS) state, was observed. It was identified as an exciplex. The exciplex preceded the CCS state in polar benzonitrile and the excited singlet state of fullerene in nonpolar toluene. The behavior of the dyads was modeled by using a common kinetic scheme involving equilibria between the exciplex and LE chromophores. The scheme is suitable for all the studied porphyrin-fullerene compounds. The rates of reaction steps depended on the type of linkage between the moieties. The scheme and Marcus theory were applied to calculate electronic couplings for sequential reactions, and consistent results were obtained.  相似文献   

5.
A novel multimodular donor–acceptor polyad featuring zinc porphyrin, fullerene, ferrocene, and triphenylamine entities was designed, synthesized, and studied as a charge‐stabilizing, photosynthetic‐antenna/reaction‐center mimic. The ferrocene and fullerene entities, covalently linked to the porphyrin ring, were distantly separated to accomplish the charge‐separation/hole‐migration events leading to the creation of a long‐lived charge‐separated state. The geometry and electronic structures of the newly synthesized compound was deduced by B3LYP/3‐21G(*) optimization, while the energy levels for different photochemical events was established using data from the optical absorption and emission, and electrochemical studies. Excitation of the triphenylamine entities revealed singlet‐singlet energy transfer to the appended zinc porphyrin. As predicted from the energy levels, photoinduced electron transfer from both the singlet and triplet excited states of the zinc porphyrin to fullerene followed by subsequent hole migration involving ferrocene was witnessed from the transient absorption studies. The charge‐separated state persisted for about 8.5 μs and was governed by the distance between the final charge‐transfer product, that is, a species involving a ferrocenium cation and a fullerene radical anion, with additional influence from the charge‐stabilizing triphenylamine entities located on the zinc‐porphyrin macrocycle.  相似文献   

6.
The first example of covalently linked free-base corrole-fullerene dyads is reported. In the newly synthesized dyads, the free-energy calculations performed by employing the redox and singlet excited-state energy in both polar and nonpolar solvents suggested the possibility of electron transfer from the excited singlet state of corrole to the fullerene entity. Accordingly, steady-state and time-resolved emission studies revealed efficient fluorescence quenching of the corrole entity in the dyads. Further studies involving femtosecond laser flash photolysis and nanosecond transient absorption studies confirmed electron transfer to be the quenching mechanism, in which the electron-transfer product, the fullerene anion radical, was able to be spectrally characterized. The rate of charge separation, kCS, was found to be on the order of 10(10)-10(11) s(-1), suggesting an efficient photoinduced electron-transfer process. Interestingly, the rate of charge recombination, kCR, was slower by 5 orders of magnitude in nonpolar solvents, cyclohexane and toluene, resulting in a radical ion-pair lasting for several microseconds. Careful analysis of the kinetic and thermodynamic data using the Marcus approach revealed that this novel feature is due to appropriately positioning the energy level of the charge-separated state below the triplet states of either of the donor and acceptor entities in both polar and nonpolar solvents, a feature that was not evident in donor-acceptor dyads constructed using symmetric tetrapyrroles as electron donors.  相似文献   

7.
To harvest energy from the near‐infrared (near‐IR) and infrared (IR) regions of the electromagnetic spectrum, which constitutes nearly 70 % of the solar radiation, there is a great demand for near‐IR and IR light‐absorbing sensitizers that are capable of undergoing ultrafast photoinduced electron transfer when connected to a suitable electron acceptor. Towards achieving this goal, in the present study, we report multistep syntheses of dyads derived from structurally modified BF2‐chelated azadipyrromethene (ADP; to extend absorption and emission into the near‐IR region) and fullerene as electron‐donor and electron‐acceptor entities, respectively. The newly synthesized dyads were fully characterized based on optical absorbance, fluorescence, geometry optimization, and electrochemical studies. The established energy level diagram revealed the possibility of electron transfer either from the singlet excited near‐IR sensitizer or singlet excited fullerene. Femtosecond and nanosecond transient absorption studies were performed to gather evidence of excited state electron transfer and to evaluate the kinetics of charge separation and charge recombination processes. These studies revealed the occurrence of ultrafast photoinduced electron transfer leading to charge stabilization in the dyads, and populating the triplet states of ADP, benzanulated‐ADP and benzanulated thiophene‐ADP in the respective dyads, and triplet state of C60 in the case of BF2‐chelated dipyrromethene derived dyad during charge recombination. The present findings reveal that these sensitizers are suitable for harvesting light energy from the near‐IR region of the solar spectrum and for building fast‐responding optoelectronic devices operating under near‐IR radiation input.  相似文献   

8.
Three porphyrin-fullerene dyads, in which a diyne bridge links C(60) with a beta-position on a tetraarylporphyrin, have been synthesized. The free-base dyad was prepared, as well as the corresponding Zn(II) and Ni(II) materials. These represent the first examples of a new class of conjugatively linked electron donor-acceptor systems in which pi-conjugation extends from the porphyrin ring system directly to the fullerene surface. The processes that occur following photoexcitation of these dyads were examined using fluorescence and transient absorption techniques on the femtosecond, picosecond, and nanosecond time scales. In sharp contrast to the photodynamics associated with singlet excited-state decay of reference tetraphenylporphyrins (ZnTPP, NiTPP, and H(2)TPP), the diyne-linked dyads undergo ultrafast (<10 ps) singlet excited-state deactivation in toluene, tetrahydrofuran (THF), and benzonitrile (PhCN). Transient absorption techniques with the ZnP-C(60) dyad clearly show that in toluene intramolecular energy transfer (EnT) to ultimately generate C(60) triplet excited states is the dominant singlet decay mechanism, while intramolecular electron transfer (ET) dominates in THF and PhCN to give the ZnP(*+)/C(60)(*-) charge-separated radical ion pair (CSRP). Electrochemical studies indicate that there is no significant charge transfer in the ground states of these systems. The lifetime of ZnP(*+)/C(60)(*-) in PhCN was approximately 40 ps, determined by two different types of transient absorption measurement in two different laboratories. Thus, in this system, the ratio of the rates for charge separation (k(CS)) to rates for charge recombination (k(CR)), k(CS)/k(CR), is quite small, approximately 7. The fact that charge separation (CS) rates increase with increasing solvent polarity is consistent with this process occurring in the normal region of the Marcus curve, while the slower charge recombination (CR) rates in less polar solvents indicate that the CR process occurs in the Marcus inverted region. While photoinduced ET occurs on a similar time scale in a related dyad 15 in which a diethynyl bridge connects C(60) to the para position of a meso phenyl moiety of a tetrarylporphyrin, CR occurs much more slowly; i.e., k(CS)/k(CR) approximately equal to 7400. Thus, the position at which the conjugative linker is attached to the porphyrin moiety has a dramatic influence on k(CR) but not on k(CS). On the basis of electron density calculations, we tentatively conclude that unfavorable orbital symmetries inhibit charge recombination in 15 vis a vis the beta-linked dyads.  相似文献   

9.
Two cobalt(II) porphyrin-C(60) malonate-linked conjugates, the mono-connected Co1 and the bis-connected trans-2 isomer Co3, have been synthesized for the first time either by direct cyclopropanation with the precursor malonate Co4 or by metalation of the bisadduct H(2)3. For the investigation of the interaction between the porphyrin donor and fullerene acceptor within these dyads, electrochemical and photophysical investigations have been carried out. Compared to Zn3 and trans-2 bisadduct 7, the first reduction of the fullerene moiety within Co3 becomes easier (40 mV in dichloromethane and 20 mV in benzonitrile), indicating significant interactions between the pi-system of the fullerene and the d-orbitals of the central Co atom. Compared to the Co complexes 9, Co4, and Co1, the first oxidation of Co3 is considerably shifted to more positive potentials, if benzonitrile instead of dichloromethane is used as solvent. At the same time, the oxidation is no longer centered on the Co(II) center but on the porphyrin macrocycle, as corroborated by spectroelectrochemistry. A similar solvent dependence was observed in transient absorption spectroscopic measurements. In toluene, benzonitrile and anisole photoinduced electron transfer within Co3 leads to the formation of a charge-separated state Co(II)P.+ -C(60).- with a lifetime of 560 +/- 20 ns in benzonitrile, whereas in other solvents such as THF, nitrobenzene, ortho-diclorobenzene, and tert-butylbenzene the formation of a Co(III)P-C(60).- as transient was detected, which is, however, short-lived (860 +/- 40 ps in THF) and exhibits charge recombination dynamics that are in the Marcus inverted region. Particularly important is the fact that the electronic coupling (V) in Co(III)P-C(60).- is 18 cm(-1) substantially smaller than the V value of 313 cm(-1) in ZnP.+ -C(60).- .  相似文献   

10.
Donor-acceptor dyads were constructed using zinc N-confused porphyrin (ZnNCP), a structural isomer of zinc tetraphenylporphyrin, as a donor, and fullerene as an electron acceptor. Two derivatives, pyridine-coordinated zinc N-confused porphyrin (Py:ZnNCP) and the zinc N-confused porphyrin dimer (ZnNCP-dimer) were utilized to form the dyads with an imidazole-appended fulleropyrrolidine (C60Im). These porphyrin isomers formed well-defined 1:1 supramolecular dyads (C60Im:ZnNCP) via axial coordination. The dyads were characterized by optical absorption and emission, ESI-mass, 1H NMR, and electrochemical methods. The binding constant, K, was found to be 2.8 x 10(4) M(-1) for C60Im:ZnNCP. The geometric and electronic structure of C60Im:ZnNCP were probed by using DFT B3LYP/3-21G methods. The HOMO was found to be on the ZnNCP entity, while the LUMO was primarily on the fullerene entity. The electrochemical properties of C60Im:ZnNCP was probed using cyclic voltammetry in o-dichlorobenzene, 0.1 n-Bu4NClO4. The Py:ZnNCP was found to be easier to oxidize by over 340 mV compared to Py:ZnTPP. Upon dyad formation via axial coordination, the first oxidation revealed an anodic shift of nearly 90 mV. Evidence of photoinduced charge separation from the singlet excited ZnNCP to the appended fullerene was established from time-resolved emission and nanosecond transient absorption studies.  相似文献   

11.
A series of six new dyads consisting of a zinc or magnesium porphyrin appended to a platinum terpyridine acetylide complex via a para-phenylene bisacetylene spacer are described. Different substituents on the 4' position of the terpyridinyl ligand were explored (OC7H15, PO3Et2, and H). The ground-state electronic properties of the dyads are studied by electronic absorption spectroscopy and electrochemistry, and they indicate some electronic interactions between the porphyrin subunit and the platinum complex. The photophysical properties of these dyads were investigated by steady-state, time-resolved, and femtosecond transient absorption spectroscopy in N,N-dimethylformamide solution. Excitation of the porphyrin unit leads to a very rapid electron transfer (2-20 ps) to the nearby platinum complex followed by an ultrafast charge recombination, thus preventing any observation of the charge separated state. The variation in the rate of the photoinduced electron transfer in the series of dyads is consistent with Marcus theory. The results underscore the potential of the para-phenylene bisacetylene bridge to mediate a rapid electron transfer over a long donor-acceptor distance.  相似文献   

12.
Diethylamino‐substituted oligophenylenevinylene (OPV) building blocks have been prepared and used for the synthesis of two [60]fullerene–OPV dyads, F‐D1 and F‐D2 , which exhibit different conjugation length of the OPV fragments. The electrochemical properties of these acceptor–donor dyads have been studied by cyclic voltammetry. The first reduction is always assigned to the fullerene moiety and the first oxidation centered on the diethylaniline groups of the OPV rods, thus making these systems suitable candidates for photoinduced electron transfer. Both the OPV and the fullerene‐centered fluorescence bands are quenched in toluene and benzonitrile, which suggests the occurrence of photoinduced electron transfer from the amino‐substituted OPVs to the carbon sphere in the dyads in both solvents. By means of bimolecular quenching experiments, transient absorption spectral fingerprints of the radical cationic species are detected in the visible (670 nm) and near‐IR (1300–1500 nm) regions, along with the much weaker fullerene anion band at λmax=1030 nm. Definitive evidence for photoinduced electron transfer in F‐D1 and F‐D2 comes from transient absorption measurements. A charge‐separated state is formed within 100 ps and decays in less than 5 ns.  相似文献   

13.
Photoinduced electron transfer in intramolecularly interacting free-base porphyrin bearing one or four 18-crown-6 ether units at different positions of the porphyrin macrocycle periphery and pristine fullerene was investigated in polar benzonitrile and nonpolar o-dichlorobenzene and toluene solvents. Owing to the presence of two modes of binding, stable dyads were obtained in which the binding constants, K, were found to range between 4.2 x 10(3) and 10.4 x 10(3) M(-1) from fluorescence quenching data depending upon the location and number of crown ether entities on the porphyrin macrocycle and the solvent. Computational studies using the B3LYP/3-21G() method were employed to arrive at the geometry and electronic structure of the intramolecular dyads. The energetics of the redox states of the dyads were established from cyclic voltammetric studies. Under the intramolecular conditions, both the steady-state and time-resolved emission studies revealed efficient quenching of the singlet excited free-base porphyrin in these dyads, and the measured rates of charge separation, k(CS), were found to be in the 10(8)-10(9) s(-1) range. Nanosecond transient absorption studies were performed to characterize the electron-transfer products and to evaluate the charge-recombination rates. Shifting of the electron-transfer pathway from the intra- to intermolecular route was achieved by complexing potassium ions to the crown ether cavity(ies) in benzonitrile. This cation complexation weakened the intramolecular interactions between fullerene and the crown ether appended free-base porphyrin supramolecules, and under these conditions, intermolecular type interactions were mainly observed. Reversible inter- to intramolecular electron transfer was also accomplished by extracting the potassium ions of the complex with the addition of 18-crown-6. The present study nicely demonstrates the application of supramolecular methodology to control the excited-state electron-transfer path in donor-acceptor dyads.  相似文献   

14.
The electrochemical and photophysical properties of molecular architectures consisting of oligomeric meso,meso-linked oligoporphyrin rods linked at both extremities to methanofullerene moieties are presented in comparison to those of model systems. Cyclic voltammetry data evidence the presence of a strong intramolecular electronic coupling along the porphyrin oligomers that varies slightly with their length. This interaction affects the redox potentials of both fullerene and porphyrin moieties. The electronic coupling between the two chromophores is confirmed by comparing the redox potentials of porphyrin arrays before and after attachment of the carbon sphere. Electronic absorption, fluorescence, and phosphorescence spectra of the porphyrin oligomers in toluene are reported, which provide the energy of the lowest singlet and triplet electronic excited states. In the fullerene-porphyrin conjugates, ground-state charge-transfer (CT) interactions are evidenced by low-energy absorption features above 750 nm. These systems also exhibit near-infrared (NIR) CT luminescence in toluene with lifetimes shorter than 1000 ps. On increasing the solvent polarity (from toluene to Et2O and THF), CT emissions become progressively weaker, red-shifted, and shorter lived, which reflects the energy-gap law and Marcus inverted region effects. Luminescence is not detected in benzonitrile. Picosecond transient absorption spectroscopy of the porphyrin-fullerene conjugates allows detection of the porphyrin cation as a clear fingerprint for electron transfer. The rate of charge recombination is in agreement with CT luminescence lifetimes, which confirms the occurrence of NIR radiative back-electron transfer.  相似文献   

15.
《Chemphyschem》2003,4(12):1299-1307
Two classes of fullerene‐based donor–bridge–acceptor (D–B–A) systems containing donors of varying oxidation potentials have been synthesized. These systems include fullerenes linked to heteroaromatic donor groups (phenothiazine/phenoxazine) as well as substituted anilines (p‐anisidine/p‐toluidine). In contrast to the model compound, an efficient intramolecular electron transfer is observed from the fullerene singlet excited state in polar solvents. An increase in the rate constant and quantum yield of charge separation (kcs and Φcs) has been observed for both classes of dyads, with decrease in the oxidation potentials of the donor groups. This observation indicates that the rates of the forward electron transfer fall in the normal region of the Marcus curve. The long‐lived charge separation enabled the characterization of electron transfer products, namely, the radical cation of the donor and radical anion of the pyrrolidinofullerene, by using nanosecond transient absorption spectroscopy. The small reorganization energy (λ) of C60 coupled with large negative free energy changes (‐ΔG°) for the back electron transfer places the back electron process in the inverted region of Marcus curve, thereby stabilizing the electron transfer products.  相似文献   

16.
Photoinduced electron-transfer processes in cis and trans functionalized bis-18-crown-6 porphyrin self-assembled with fullerene functionalized with pyridine or alkylammonium cation entities are reported. The structural integrity of the newly formed supramolecular conjugates was accomplished by optical absorption and emission, electron spray ionization mass, electrochemistry, and semiempirical PM3 calculations. A 1:2 stoichiometry of the supramolecular porphyrin:fullerene conjugates was deduced from these studies. The conjugates revealed stable "two-point"' binding involving metal-ligand coordination and alkylammonium cation-crown ether binding or only the latter type of binding depending upon the functionality of the fullerene and metal ion in the porphyrin cavity. The effect of the variation on free energy changes of charge separation and the charge recombination was achieved by varying the metal ion in the porphyrin cavity. The charge-separation rates (k(CS)) determined from the picosecond time-resolved emission studies were generally higher for the cis bis-crown functionalized porphyrins than those of the corresponding trans ones. A comparison of the k(CS) values reported earlier for 1:1 porphyrin-fullerene conjugates with a similar self-assembly mechanism suggested that employing a higher number of acceptor entities improves the electron-transfer rates. The calculated charge-recombination rates (k(CR)) were 2-3 orders of magnitude smaller than the k(CS) values, suggesting the occurrence of the charge recombination process in the Marcus inverted region. The lifetimes of the radical ion pair (tau(RIP)) ranged between 46 and 233 ns indicating charge stabilization in the studied conjugates.  相似文献   

17.
Two quaterthiophene-[60]fullerene dyads in which C60 is singly (4TsC) or doubly (4TdC) connected to the inner beta-position of the terminal thiophene rings have been synthesized. The electronic properties of these donor-acceptor compounds were analyzed by UV/Vis spectroscopy and cyclic voltammetry, and their photophysical properties in solution and in the solid state by (time-resolved) photoluminescence (PL) and photoinduced absorption (PIA) spectroscopy. Both the flexible and geometrically constrained 4TsC and 4TdC dyads exhibit photoinduced charge transfer from the quaterthiophene to the fullerene in toluene and o-dichlorobenzene (ODCB). In toluene, charge transfer occurs in both dyads by an indirect mechanism, the first step of which is a singlet-energy transfer from the 4T(S1) state to the C60(S1) state. In the more polar ODCB, direct electron transfer from 4T(S1) competes with energy transfer, and both direct and indirect charge transfers are observed. The geometrical fixation of the donor and acceptor chromophores in 4TdC results in rate constants for energy and electron transfer that are more than an order of magnitude larger than those of the flexible 4TsC system. For both dyads, charge recombination is extremely fast, as inferred from picosecond-resolved temporal evolution of the excited state absorption of the 4T.+ radical cation both in toluene and ODCB.  相似文献   

18.
A new series of molecular dyads and pentad featuring free-base porphyrin and ruthenium phthalocyanine have been synthesized and characterized. The synthetic strategy involved reacting free-base porphyrin functionalized with one or four entities of phenylimidazole at the meso position of the porphyrin ring with ruthenium carbonyl phthalocyanine followed by chromatographic separation and purification of the products. Excitation transfer in these donor-acceptor polyads (dyad and pentad) is investigated in nonpolar toluene and polar benzonitrile solvents using both steady-state and time-resolved emission techniques. Electrochemical and computational studies suggested that the photoinduced electron transfer is a thermodynamically unfavorable process in nonpolar media but may take place in a polar environment. Selective excitation of the donor, free-base porphyrin entity, resulted in efficient excitation transfer to the acceptor, ruthenium phthalocyanine, and the position of imidazole linkage on the free-base porphyrin could be used to tune the rates of excitation transfer. The singlet excited Ru phthalocyanine thus formed instantly relaxed to the triplet state via intersystem crossing prior to returning to the ground state. Kinetics of energy transfer (k(ENT)) was monitored by performing transient absorption and emission measurements using pump-probe and up-conversion techniques in toluene, respectively, and modeled using a F?rster-type energy transfer mechanism. Such studies revealed the experimental k(ENT) values on the order of 10(10)-10(11) s(-1), which readily agreed with the theoretically estimated values. Interestingly, in polar benzonitrile solvent, additional charge transfer interactions in the case of dyads but not in the case of pentad, presumably due to the geometry/orientation consideration, were observed.  相似文献   

19.
Porphyrin–fullerene dyads are promising candidates for organic photovoltaic devices. The electron-transfer (ET) properties of the molecular devices depend significantly on the mutual position of the donor and acceptor. Recently, a new type of molecular isomerism (akamptisomerism) has been discovered. In the present study, we explore how photoinduced ET can be modulated by passing from one akamptisomer to another. To this aim, four akamptisomers of the quinoxalinoporphyrin–[60]fullerene complex are selected for computational study. The most striking finding is that, depending on the isomer, the porphyrin unit in the dyad can act as either electron donor or electron acceptor. Thus, the stereoisomeric diversity allows one to change the direction of ET between the porphyrin and fullerene moieties. To understand the effect of akamptisomerism on the photoinduced ET processes, a detailed analysis of initial and final states involved in the ET is performed. The computed rate for charge separation is estimated to be in the region of 1–10 ns−1. The formation of a long-living quinoxalinoporphyrin anion radical species is predicted.  相似文献   

20.
A zinc porphyrin dimer-fullerene supramolecular complex with a large association constant is assembled; efficient intramolecular photoinduced electron transfer from the singlet excited state of zinc porphyrin to the fullerene is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号