首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
生物材料的低温保存最为重要的是降温冷却过程。介绍"冻结线跟踪法"的降温冷却及控制方法,即生物材料在降温冷却的同时,逐步提高低温保护剂溶液的浓度,这可避免细胞内外冰晶的产生,从而减少对细胞的冷冻损伤,克服大体积生物材料低温保存的困难。最后,对生物材料低温保存的应用前景进行讨论。  相似文献   

2.
生物材料低温保存过程及最新进展   总被引:4,自引:0,他引:4  
史英  曾叶  虞华  章忠敏 《低温与超导》2006,34(2):141-144
介绍了生物材料低温保存所需经历的三个阶段,即降温过程、储存过程、复温过程。低温保护剂介入低温保存的全过程,这有助于提高生物材料低温保存的存活率,所以选择合适的低温保护剂也很重要。最后还介绍了低温保存的最新进展。  相似文献   

3.
生物材料的低温保存一般都要经历降温过程、低温储存过程及复温过程,其中降温过程中对生物细胞的影响最大.每一种生物细胞都有自己合适的降温速率,如能满足其这种降温速率,细胞所受到的低温损伤最小,则生物细胞的复活率最高.文中介绍程序控制变速降温装置的主要结构及几种典型生物体的降温过程.最后,对器官的低温保存进行分析讨论.  相似文献   

4.
液相线跟踪法是生物材料玻璃化保存的一种手段。降温时通过边降温边提高低温保护剂浓度、复温时边升温边降低低温保护剂浓度的方式,该方法能够有效减轻降温/复温过程中高浓度保护剂对细胞的毒性损伤,从而提高生物材料低温保存的成活率。文中介绍可实现液相线跟踪的低温保存装置,该装置以液氮为冷源、采用计算机控制。以二甲亚砜-氯化钠-水溶液为例进行的实验表明,该装置能够实现温度和保护剂浓度的良好匹配,二甲亚砜的最终浓度达到了玻璃化所需浓度。  相似文献   

5.
低温保存是生物材料进行长时间保存的一种有效方法,但在0℃~-60℃的温区范围,极容易发生低温损伤,如何减小低温损伤是细胞进行成功的低温保存的关键。文中建立了生物组织在低温保存过程中的数学模型,通过ANSYS分析软件,对样品在降温过程中的温度场进行了计算分析和数值模拟,为冷冻造成细胞损伤的研究提供了理论依据。  相似文献   

6.
生物材料在冻存过程中保存液内加载低温保护剂可以减轻降温和复温时对细胞的损伤。介绍了低温保护剂的种类及其特点,分析了低温保护剂的作用机理。实验结果表明,选择合适的低温保护剂及其浓度,可以大大提高生物细胞的存活率。  相似文献   

7.
文中主要介绍高原莴苣种子生长和低温保存时的相关性,为保护保存该种子提供理论和实验依据。种子在低温和适宜温度两种不同情况下培养,进行实验比较,得出低温预培养的种子对于低温保存无作用;快速降温下,DSC曲线出现两个波峰HTE和LTE,当温度低于LTE时,无种子发芽存活;慢速降温下,DSC曲线只有一个波峰HTE;随着温度降低,种子发芽率降低,当温度低于-40℃时,无种子存活。  相似文献   

8.
血管低温保存是满足临床移植的重要保证手段。从影响动脉血管低温保存的因素,低温保存后的活性恢复、细胞水平上的血管低温损伤机理、冻结/复温过程中的热物理性质和力学性质变化,以及低温断裂现象等方面综述了血管低温保存研究进展。  相似文献   

9.
使用DMA测定了3种降温速率低温保存的家兔颈总动脉的蠕变曲线.结果表明:1.5℃/min降温速率低温保存后,血管的粘弹性最接近新鲜对照组;而对应降温速率1.5,5,10℃/min,血管粘弹性依次降低.动脉的粘弹性极有可能是评估其低温保存效果的潜在评价指标.  相似文献   

10.
冷却与低温保存对小麦酯酶活性的影响   总被引:6,自引:0,他引:6  
为研究小麦酯酶作为检测农药残留量生物传感器的生物敏感元件的可行性,研究了小麦酯酶在室温(20℃)和4℃保存时、在经历低温后及在液氮中保存后酶活性的变化情况。研究显示,小麦酯酶在室温和4℃保存时,其活性衰退较快,有必要对其进行低温保存;在液氮中停留20min或保存34h后,小麦酶活性仍能维持很高;在液氮中保存8天,活性仍有97.5%。  相似文献   

11.
生物材料红外波段消光性能分析   总被引:1,自引:0,他引:1  
对制备的三种消光材料真菌An0429孢子,真菌Bb0919孢子以及真菌Cx0507孢子的红外波段消光性能进行了测试分析。静态测试采用压片法得到三种生物材料的镜面反射光谱,然后根据Krames-Kronig(K-K)关系对三种生物材料红外波段的复折射率进行了计算。由Mie理论计算得到三种生物材料红外波段的静态质量消光系数,并与几种无机非金属材料进行了对比。搭建烟幕箱实验平台,对三种生物材料3~5 μm波段动态质量消光系数进行了测试分析,得到三种消光材料的动态质量消光系数分别为1.257,1.065以及1.009 m2·g-1。测试分析结果表明,三种生物材料的红外波段消光性能优于常见的无机材料,其生产周期短,生产成本低,生产过程无毒,对环境友好等优点,使得生物消光材料具有较好的应用前景。  相似文献   

12.

In our previous paper [1] a high pressure technique for monitoring pressure up to 700 MPa and temperature from m 40 °C to +100 °C in several pressure vessels simultaneously was reported. This technique, applied in Unipress High Pressure Multivessel Apparatus for studies of biological materials, revealed some limitations. In this paper we propose a new solution which allows to overcome them. In this solution two different pressure media are used, separated from each other: one suitable for biological studies and the other proper for electric sensors. A new integrated pressure/temperature probe is presented in which manganin pressure gauge is confined in a metal bellows separating the two pressure transmitting media. The bellows can be easily assembled or disassembled, allowing promptly to refill pressure medium or to replace the pressure gauge. Temperature is measured by constantan/copper thermocouple. The probe is linked to data acquisition system. Taking into account temperature dependence of the manganin pressure gauge, simultaneous measurements of the resistance of pressure gauge and thermocouple voltage allow to compute pressure at any temperature. The new probe is integrated with the bottom closure of the pressure vessel which also incorporates capillary inlet. Such a design leaves free access from the top of the vessel, allowing easy mounting the studied samples as well as other additional probes.  相似文献   

13.
Compared to conventional dissolution methods, solid and slurry sampling methods offer advantages which include speed, improved sensitivity, a reduced risk of contamination, and a reduced risk of analyte loss. Most successful graphite furnace atomic absorption spectrometry (GFAAS) results have been obtained by the use of modern furnace technology, which includes Zeeman background correction, platform atomization, and matrix modifiers. In this work, solid and slurry sampling were investigated for the determination of Ag, Cu, Fe, Mn, Pb, and Zn in biological National Institute of Standards and Technology (NIST) standard reference materials (SRMs) with the use of vintage (1980) GFAAS instrumentation, aqueous calibration, and deuterium arc background correction. Although reasonable accuracy was obtained with solid sampling, the relative standard deviation was between 13 and 53%, which was probably caused by the inability of the furnace to reproducibly vaporize the sample and the inability of deuterium arc background correction to account for the high background signals. Good accuracy and precision (3–13%) were obtained with slurry sampling, with the exception of the determination of copper in citrus leaves. This low result (three times below the certified value) and high precision (RSD = 31%) were probably caused by irreproducible atomization of the sample matrix.  相似文献   

14.
作为一种新兴的方式,太赫兹时域光谱和成像已经被广泛应用到研究不同生物组织的光学特性。在空气等离子体处施加偏置电场对太赫兹波脉冲进行外差式相干检测(air-biased-coherent-detection,ABCD)的太赫兹系统具有超宽频带和可以在较远距离进行成像的优点,十分适用于对生物组织进行超宽谱研究,而对生物组织进行光谱测量通常需要基底材料。利用太赫兹ABCD系统对四种典型的基底材料(石英,高密度聚乙烯,聚四氟乙烯和石蜡)的光学参数进行测定,并计算其在1~15THz频率范围内的吸收系数和折射率。结果表明,高密度聚乙烯和石蜡可以很好的被用作生物组织超宽频带太赫兹光谱测量的基底材料。同时,虽然石英和聚四氟乙烯都是窄带(0.1~3THz)太赫兹系统中常用的基底材料,但是由于它们在高于5THz的频率范围内对太赫兹波具有较强的吸收,所以不能用作超宽频带太赫兹光谱测量的基底材料。  相似文献   

15.
不同物料和炭化方式制备生物炭结构性质的FTIR研究   总被引:12,自引:0,他引:12  
红外光谱是了解生物炭结构性质特征的重要手段。通过采用傅里叶红外光谱技术(FTIR)对不同物料和制备方式的生物炭结构性质特征进行表征。结果表明:不同的物料制备的生物炭均具有羟基、芳香基及一些含氧基团的吸收峰,与活性碳有共同特征;但其他吸收峰,有着显著差异。高温炭化可以使玉米秸秆中—OH,—CH3,—CH2—,CO间发生缔合或消除,促进了芳香基团的形成。在不同炭化方式下,加热和微波炭化,对生物炭形成有着机理上差别,加热炭化可致使醇、酚中的—OH彼此结合或者消除,形成苯环类基团,而微波法能使得芳香基团钝化阻止其参与反应,使得苯环类物质得以更多形成。综上表明,红外光谱可较好反映生物炭的结构特征,揭示了生物炭主要含有—OH、芳香基团等活性基团。  相似文献   

16.
Controlled synthesis of semiconductor nano/microparticles has attracted substantial attention for use in numerous applications from photovoltaics to photocatalysis and bioimaging due to the breadth of available physicochemical and optoelectronic properties. Microfluidic material synthesis strategies have recently been demonstrated as an effective technique for rapid development, controlled synthesis, and continuous manufacturing of solution-processed semiconductor nano/microparticles, due to enhanced parametric control enabling precise tuning of material properties, size, and morphologies. In this review, the basics of microfluidic material synthesis approaches complemented with recent advances in the flow fabrication of metal oxide, chalcogenide, and perovskite semiconductor particles are discussed. Furthermore, advancements in artificial intelligence (AI)-driven materials–space exploration and accelerated formulation optimization using modular microfluidic reactors are outlined. Finally, future directions for the fabrication of semiconducting materials in flow and the implementation of AI with automated microfluidic reactors for accelerated material discovery and development are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号