首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The hydrothermal reaction of MoO3, [Ni(CH3CO2)2] x 4H2O, tpypyz, ethylenediphosphonic acid and water yields the 2D material [[Ni4(tpypyz)3][Mo5O15(O3PCH2CH2PO3)]2] x 23H2O (1 x 23H2O), constructed from [Mo5O15(O3PCH2CH2PO3)]4- clusters linked in one-dimension through the ethylene tethers of the diphosphonate component; these molybdodiphosphonate chains are in turn linked into a 2D network through the tetranuclear secondary metal-ligand subunit [Ni4(tpypyz)3]8+.  相似文献   

2.
The hydrothermal reaction of CuSO(4).5H2O, Na2MoO(4).2H2O and 2,2'-bipyridine with the bridging diphosphonate ligand H2O3P(CH2)4PO3H2 yields the one-dimensional chain [(Cu(bpy)2)(Cu(bpy)(H2O)2)(Mo5O15)(O3P(CH2)4PO3)].H2O; the introduction of a second bridging component in the reaction of Cu(MeCO2)2.H2O, MoO3, H2O3PCH2CH2PO3H2 and tetra(2-pyridyl)pyrazine yields the network solid [(Cu2(tpypyz)(H2O)2)(Mo5O15)(O3PCH2CH2PO3)].5.5H2O.  相似文献   

3.
Hydrothermal reactions of a vanadate source, an appropriate Cu(II) source, bisterpy and an organodiphosphonate, H2O3P(CH2)nPO3H2(n= 1-5), in the presence of HF, yielded a family of materials of the type oxyfluorovanadium/copper-bisterpy/organodiphosphonate. Under similar reaction conditions, variations in diphosphonate tether length n provided the one-dimensional [{Cu2(bisterpy)}V2F2O2{HO3PCH2PO3}{O3PCH2PO3}](1) and [{Cu2(bisterpy)}V2F4O4{HO3P(CH2)2PO3H}](3), the two-dimensional [{Cu2(bisterpy)}V2F2O2(H2O)2{HO3P(CH2)2PO3}2] x 2H2O (2 x 2H2O), [{Cu2(bisterpy)(H2O2}V2F2O2{O3P(CH2)3PO3}{HO3P(CH2)3PO3H}(4) and [{Cu2(bisterpy)}V4F4O4(OH)(H2O){HO3P(CH2)5PO3}{O3P(CH2)5PO3}] x H2O (9 x H2O) and the three-dimensional [{Cu2(bisterpy)}3V8F6O17{HO3P(CH2)3PO3}4]0.8H2O (5 x 0.8H2O), [{Cu2(bisterpy)}V4F2O6{O3P(CH2)4PO3}2](8) and [{Cu2(bisterpy)(H2O)}2V8F4O8(OH)4{HO3P(CH2)5PO3H}2{O3P(CH2)5PO)}3] x 4.8H2O (10 x 4.8H2O). In addition, two members of the oxovanadium/Cu2(bisterpy)/organodiphosphonate family [{Cu2(bisterpy)}V2O4{HO3P(CH2)3PO3}2](6) and [{Cu2(bisterpy)}3V4O8(OH)2{O3P(CH2)3PO3}2{HO3P(CH2)3PO3}2] x 5H2O (7 x 5H2O) cocrystallized from the reaction mixture which provided 5. The overall architectures reveal embedded substructures based on V/P/O(F) clusters, chains, networks, and frameworks. In contrast to the oxovanadium/Cu2(bisterpy)/ organodiphosphonate family, several of the materials of this study also exhibit the direct condensation of vanadium polyhedra to produce binuclear and/or tetranuclear building units.  相似文献   

4.
Rate constants and product branching ratios for POxCly- ions reacting with H and H2 were measured in a selected ion flow tube (SIFT) from 298 to 500 K. PO2Cl-, PO2Cl2-, POCl2-, and POCl3- were all unreactive with H2, having a rate constant with an upper limit of <5 x 10(-12) cm3 s(-1). PO2Cl2- did not react with H atoms either, having a similar rate constant limit of <5 x 10(-12) cm3 s(-1). The rate constants for PO2Cl-, POCl2-, and POCl3- reacting with H showed no temperature dependence over the limited range of 298-500 K and were approximately 10-20% of the collision rate constant. Cl abstraction by H to form HCl was the predominant product channel for PO2Cl-, POCl2-, and POCl3-, with a small amount of Cl- observed from POCl2- + H. Reactions of O2 and O3 with the POCl- products ions from the reaction of POCl2- + H were observed to yield predominantly PO3- and PO2-, respectively. POCl- reacted with O2 and O3 with rate constants of 8.9 +/- 1.1 x 10(-11) and 5.2 +/- 3.3 x 10(-10) cm3 s(-1), respectively. No associative electron detachment in the reactions with H atoms was observed with any of the reactant ions; however, detachment was observed with a PO- secondary product ion at high H atom concentrations. Results of new G3 theoretical calculations of optimized geometries and energies for the products observed are discussed.  相似文献   

5.
On heating the hydrated complexes 18-Crown[6].M[H(2)PO(4)].xH(2)O (x= 2 for M = K, Rb; x= 1.5 for M = Cs), quantitatively prepared by mechanical mixing of crystalline 18-Crown[6] and M[H(2)PO(4)], to ca. 60 degrees C, water loss takes place, accompanied by the extrusion of the crown ether from the crystalline complex and followed by reconstruction of the inorganic phase M[H(2)PO(4)](M = K, Rb, Cs); the resulting solid mixture reverts to 18-Crown[6].M[H(2)PO(4)].xH(2)O (x= 2 for M = K, Rb; x= 1.5 for M = Cs) upon grinding in air.  相似文献   

6.
The hydrothermal reactions of a molybdate source, a nickel(II) salt, tetra-2-pyridylpyrazine (tpyprz), and organodiphosphonic acids H(2)O(3)P(CH(2))(n)()PO(3)H(2) (n = 1-5) of varying tether lengths yielded a series of organic-inorganic hybrid materials of the nickel-molybdophosphonate family. A persistent characteristic of the structural chemistry is the presence of the [Mo(5)O(15)(O(3)PR)(2)](4)(-) cluster as a molecular building block, as noted for the one-dimensional materials [[Ni(2)(tpyprz)(2)]Mo(5)O(15)[O(3)P(CH(2))(4)PO(3)]]x6.65H(2)O (6x6.65H(2)O) and [[Ni(2)(tpyprz)(2)]Mo(5)O(15)[O(3)P(CH(2))(5)PO(3)]]x3.75H(2)O (8x3.75H(2)O), the two-dimensional phases [[Ni(4)(tpyprz)(3)][Mo(5)O(15)(O(3)PCH(2)CH(2)PO(3))](2)]x23H(2)O (3x23H(2)O) and [[Ni(3)(tpyprz)(2)(H(2)O)(2)](Mo(5)O(15))(Mo(2)O(4)F(2))[O(3)P(CH(2))(3)PO(3)](2)]x8H(2)O (5x8H(2)O), and the three-dimensional structures [[Ni(2)(tpyprz)(H(2)O)(3)]Mo(5)O(15)[O(3)P(CH(2))(3)PO(3))]]xH(2)O (4xH(2)O) and [[Ni(2)(tpyprz)(H(2)O)(2)]Mo(5)O(15) [O(3)P(CH(2))(4)PO(3)]]x2.25H(2)O (7x2.25H(2)O). In the case of methylenediphosphonic acid, the inability of this ligand to tether adjacent pentanuclear clusters precludes the formation of the common molybdophosphonate building block, manifesting in contrast a second structural motif, the trinuclear [(Mo(3)O(8))(x)(O(3)PCH(2)PO(3))(y)] subunit of [[Ni(tpyprz)(H(2)O)(2)](Mo(3)O(8))(2) (O(3)PCH(2)PO(3))(2)] (1) which had been previously observed in the corresponding methylenediphosphonate phases of the copper-molybdophosphonate family. Methylenediphosphonic acid also provides a second phase, [Ni(2)(tpyprz)(2)][Mo(7)O(21)(O(3)PCH(2)PO(3))]x3.5H(2)O (9x5H(2)O), which contains a new heptamolybdate cluster [Mo(7)O(21)(O(3)PCH(2)PO(3))](4)(-) and a cationic linear chain [Ni(tpyprz)](n)(4n+) substructure. The structural chemistry of the nickel-molybdophosphonate series contrasts with that of the corresponding copper-molybdophosphonate materials, reflecting in general the different coordination preferences of Ni(II) and Cu(II). Consequently, while the Cu(II)-organic complex building block of the copper family is invariably the binuclear [Cu(2)(tpyprz)](4+) subunit, the Ni(II) chemistry with tpyprz exhibits a distinct tendency toward catenation to provide [Ni(3)(tpyprz)(2)](6+), [Ni(4)(tpyprz)(3)](8+), and [Ni(tpyprz)](n)(4n+) building blocks as well as the common [Ni(2)(tpyprz)](4+) moiety. This results in a distinct structural chemistry for the nickel(II)-molybdophosphonate series with the exception of the methylenediphosphonate derivative 1 which is isostructural with the corresponding copper compound [[Cu(2)(tpyprz)(H(2)O)(2)](Mo(3)O(8))(2)(O(3)PCH(2)PO(3))] (2). The structural chemistry of the nickel(II) series also reflects variability in the number of attachment sites at the molybdophosphonate clusters, in the extent of aqua ligation to the Ni(II) tpyprz subunit, and in the participation of phosphate oxygen atoms as well as molybdate oxo groups in linking to the nickel sites.  相似文献   

7.
Two new fluorinated microporous cobalt phosphates, (H2en)0.5[F(0.25)Co(H(0.5)PO4)0.5(PO4)0.5].0.25H2O (1) and (H2en)0.5[Fx(H2O)0.25(-x)Co(HPO3)x(PO4)1-x].0.25H2O (x = 0.17; 2), have been synthesized from different P sources, H3PO4 and H3PO3, in the presence of ethylenediamine and F ions. Both structures of 1 and 2 are based on the similar secondary building unit of a double four ring (D4R). 1 crystallizes in the orthorhombic space group Cmcm with a = 14.895(1) A, b = 9.7133(9) A, c = 13.688(1) A, V = 1980.4(3) A(3), and Z = 16 and is built up from fully F-occluded double-four-ring units via corner-sharing Co and P polyhedra and edge-sharing Co polyhedra. 2 crystallizes in the tetragonal space group /42m with a = 10.2033(4) A, c = 9.5545(9) A, V = 994.7(1) A(3), and Z = 8 and adopts an ACO-type framework with strict alternation of corner-sharing Co and P polyhedra. On the basis of the evidence from ion chromatography studies and elemental analyses, 2 contains both phosphate and phosphite ions, and the amount of F ions in 2 is the same as the amount of phosphite ions. This implies that some PO4(3-) groups in 2 are substituted by HPO3(2-) groups with the same amount of F(-) occlusion in the center of D4R as charge compensation. Magnetic susceptibility measurements of both 1 and 2 appear that they contain mainly antiferromagnetic interaction (theta = -27.8 K for 1 and -35.0 K for 2). However, the magnetic coupling is much more complicated in compound 1 because of the Co-O-Co linkages in it. Low-field temperature-dependent magnetization curves of 1 showed spontaneous magnetization in the form of two continuous bumps, one sharp and one broad. This may be related to the temperature dependence of two related but different types of spin canting. At 2 K, 1 also showed a large coercive field of about 5000 Oe.  相似文献   

8.
The heterobimetallic actinide compound UO(2)Ce(H(2)O)[C(6)H(4)(PO(3)H)(2)](2)·H(2)O was prepared via the hydrothermal reaction of U(VI) and Ce(IV) in the presence of 1,2-phenylenediphosphonic acid. We demonstrate that this is a kinetic product that is not stable with respect to decomposition to the monometallic compounds. Similar reactions have been explored with U(VI) and Ce(III), resulting in the oxidation of Ce(III) to Ce(IV) and the formation of the Ce(IV) phosphonate, Ce[C(6)H(4)(PO(3)H)(PO(3)H(2))][C(6)H(4)(PO(3)H)(PO(3))]·2H(2)O, UO(2)Ce(H(2)O)[C(6)H(4)(PO(3)H)(2)](2)·H(2)O, and UO(2)[C(6)H(4)(PO(3)H)(2)](H(2)O)·H(2)O. In comparison, the reaction of U(VI) with Np(VI) only yields Np[C(6)H(4)(PO(3)H)(2)](2)·2H(2)O and aqueous U(VI), whereas the reaction of U(VI) with Pu(VI) yields the disordered U(VI)/Pu(VI) compound, (U(0.9)Pu(0.1))O(2)[C(6)H(4)(PO(3)H)(2)](H(2)O)·H(2)O, and the Pu(IV) phosphonate, Pu[C(6)H(4)(PO(3)H)(PO(3)H(2))][C(6)H(4)(PO(3)H)(PO(3))]·2H(2)O. The reactions of Ce(IV) with Np(VI) yield disordered heterobimetallic phosphonates with both M[C(6)H(4)(PO(3)H)(PO(3)H(2))][C(6)H(4)(PO(3)H)(PO(3))]·2H(2)O (M = Ce, Np) and M[C(6)H(4)(PO(3)H)(2)](2)·2H(2)O (M = Ce, Np) structures, as well as the Ce(IV) phosphonate Ce[C(6)H(4)(PO(3)H)(PO(3)H(2))][C(6)H(4)(PO(3)H)(PO(3))]·2H(2)O. Ce(IV) reacts with Pu(IV) to yield the Pu(VI) compound, PuO(2)[C(6)H(4)(PO(3)H)(2)](H(2)O)·3H(2)O, and a disordered heterobimetallic Pu(IV)/Ce(IV) compound with the M[C(6)H(4)(PO(3)H)(PO(3)H(2))][C(6)H(4)(PO(3)H)(PO(3))]·2H(2)O (M = Ce, Pu) structure. Mixtures of Np(VI) and Pu(VI) yield disordered heterobimetallic Np(IV)/Pu(IV) phosphonates with both the An[C(6)H(4)(PO(3)H)(PO(3)H(2))][C(6)H(4)(PO(3)H)(PO(3))]·2H(2)O (M = Np, Pu) and An[C(6)H(4)(PO(3)H)(2)](2)·2H(2)O (M = Np, Pu) formulas.  相似文献   

9.
Rate constants for the gas-phase reactions of OH radicals with dimethyl phosphonate [DMHP; (CH3O)2P(O)H] were measured over the temperature range of 278-351 K at atmospheric pressure of air using a relative rate method with 4-methyl-2-pentanone as the reference compound. The Arrhenius expression obtained was 1.01 x 10(-12) e((474 +/- 159)/T) cm(3) molecule(-1) s(-1), where the indicated error is two least-squares standard deviations and does not include uncertainties in the rate constants for the reference compound. Rate constants for the gas-phase reactions of OH radicals with dimethyl methylphosphonate [DMMP, (CH3O)2P(O)CH3], dimethyl ethylphosphonate [DMEP, (CH3O)2P(O)C2H5], diethyl methylphosphonate [DEMP, (C2H5O)2P(O)CH3], diethyl ethylphosphonate [DEEP, (C2H5O)2P(O)C2H5], and triethyl phosphate [TEP, (C2H5O)3PO] were also measured at 278 and/or 283 K for comparison with a previous study (Aschmann, S. M.; Long, W. D.; Atkinson, R. J. Phys. Chem. A, 2006, 110, 7393). With the experimental procedures employed, experiments conducted at temperatures below the dew point where a water film was present on the outside of the Teflon reaction chamber resulted in measured rate constants which were significantly higher than those expected from the extrapolation of rate data obtained at temperatures (283-348 K) above the dew point. Using rate constants measured at > or = 283 K, the resulting Arrhenius expressions (in cm(3) molecule(-1) s(-1) units) are 6.25 x 10(-14) e((1538 +/- 112)/T) for DMMP (283-348 K), 9.03 x 10(-14) e((1539 +/- 27)/T) for DMEP (283-348 K), 4.35 x 10(-13) e((1444 +/- 148)/T) for DEMP (283-348 K), 4.08 x 10(-13) e((1485 +/- 328)/T) for DEEP (283-348 K), and 4.07 x 10(-13) e((1448 +/- 145)/T) for TEP (283-347 K), where the indicated errors are as above. Aerosol formation at 296 +/- 2 K from the reactions of OH radicals with these organophosphorus compounds was relatively minor, with aerosol yields of < or = 8% in all cases.  相似文献   

10.
Reactions of ozone with some vinyl compounds of the general structure CH2=CH-X were studied in aqueous solution. Rate constants (in brackets, unit: dm3 mol-1 s-1) were determined: acrylonitrile (670), vinyl acetate (1.6 x 10(5)), vinylsulfonic acid (anion, 8.3 x 10(3)), vinyl phenylsulfonate (ca. 200), vinyl diethylphosphonate (3.3 x 10(3)), vinylphosphonic acid (acid, 1 x 10(4); mono-anion, 2.7 x 10(4); di-anion, 1 x 10(5)), vinyl bromide (1 x 10(4)). The main pathway leads to the formation of HOOCH2OH and HC(O)X. As measured by stopped flow with conductometric detection, the latter one may undergo rapid hydrolysis by water, e.g. HC(O)CN (3 s-1). Other HC(O)X hydrolyse much slower, e.g. HC(O)PO3(Et)2 (7 x 10(-3) s-1) and HC(O)P(OH)O2- (too slow to be measured). The OH(-)-induced hydrolyses range from ca. 5 dm3 mol-1 s-1 [HC(O)PO(3)2-] to 3.8 x 10(5) dm3 mol-1 s-1 [HC(O)CN]. HC(O)Br mainly decomposes rapidly (too fast for the determination of the rate) into CO and Br- plus H+, and the competing hydrolysis is of minor importance (3.7%). The slow hydrolysis of HC(O)PO(3)2- at pH 10.2, where HOOCH2OH is rapidly decomposed into CH2O plus H2O2, allows an H2O2-induced decomposition (k = 260 dm3 mol-1 s-1) to take place. Formate and phosphate are the final products.  相似文献   

11.
FT IR and FT Raman spectra of Ag3(PO2NH), (Compound 1), Na3(PO2NH)3 x H2O (Compound II), Na3(PO2NH)3 x 4H2O (Compound III), [C(NH2)3]3(PO2NH)3 x H2O (Compound IV) and (NH4)4(PO2NH)4 x 4H2O (Compound V) are recorded and analyzed on the basis of the anions, cations and water molecules present in each of them. The PO2NH- anion ring in compound I is distorted due to the influence of Ag+ cation. Wide variation in the hydrogen bond lengths in compound III is indicated by the splitting of the v2 and v3 modes of vibration of water molecules. The NH4 ion in compound V occupies lower site symmetry and exhibits hindered rotation in the lattice. The correlations between the symmetric and asymmetric stretching vibrations of P-N-P bridge and the P-N-P bond angle have also been discussed.  相似文献   

12.
Lobana TS  Bhatia PK 《Talanta》1992,39(6):659-663
The extraction of iron(III) from thiocyanate medium was carried out with a synergic combination of 2,4-pentdione (Hacac) and either triphenyl phosphine oxide (Ph(3) PO) or bis (diphenylphosphinyl) alkanes, Ph(2)P(O)(CH(2))(n).P(O)PH(2) [ligand abbreviation, n: dpeO(2), 2; dpbO(2), 4]. Iron(III) was quantitatively separated from its binary mixture with chromium(III), manganese(III), cobalt(II), nickel(II), zinc(II), cadmium(II), mercury(II), lead(II), magnesium(II) and from steel samples. Copper(II) and silver(I) however, interfered. The percentage extraction was 99.0%. The respective extraction constants, K(HA), K(L) or K(syn), for the extracted species, [Fe(NCS)(acac)(2)(H(2)O)] (HA Hacac), Fe(NCS)(3)L(2) [L b Ph(3)PO, dpeO(2) or dpbO(2)], or Fe(NCS)(acac)(2)L were found to be: K(HA), 1.48 x 10(3), K(L), 1.80 x 10(2) (L Ph(3)PO), 2.02 x 10(2) (L dpeO(2) or dpbO(2)) and K(syn), 1.87 x 10(6) (L Ph(3)PO), 2.56 x 10(6) [L dpeO(2) or dpbO(2)].  相似文献   

13.
Four new Th(IV), U(IV), and Np(IV) hexanuclear clusters with 1,2-phenylenediphosphonate as the bridging ligand have been prepared by self-assembly at room temperature. The structures of Th(6)Tl(3)[C(6)H(4)(PO(3))(PO(3)H)](6)(NO(3))(7)(H(2)O)(6)·(NO(3))(2)·4H(2)O (Th6-3), (NH(4))(8.11)Np(12)Rb(3.89)[C(6)H(4)(PO(3))(PO(3)H)](12)(NO(3))(24)·15H(2)O (Np6-1), (NH(4))(4)U(12)Cs(8)[C(6)H(4)(PO(3))(PO(3)H)](12)(NO(3))(24)·18H(2)O (U6-1), and (NH(4))(4)U(12)Cs(2)[C(6)H(4)(PO(3))(PO(3)H)](12)(NO(3))(18)·40H(2)O (U6-2) are described and compared with other clusters of containing An(IV) or Ce(IV). All of the clusters share the common formula M(6)(H(2)O)(m)[C(6)H(3)(PO(3))(PO(3)H)](6)(NO(3))(n)((6-n)) (M = Ce, Th, U, Np, Pu). The metal centers are normally nine-coordinate, with five oxygen atoms from the ligand and an additional four either occupied by NO(3)(-) or H(2)O. It was found that the Ce, U, and Pu clusters favor both C(3i) and C(i) point groups, while Th only yields in C(i), and Np only C(3i). In the C(3i) clusters, there are two NO(3)(-) anions bonded to the metal centers. In the C(i) clusters, the number of NO(3)(-) anions varies from 0 to 2. The change in the ionic radius of the actinide ions tunes the cavity size of the clusters. The thorium clusters were found to accept larger ions including Cs(+) and Tl(+), whereas with uranium and later elements, only NH(4)(+) and/or Rb(+) reside in the center of the clusters.  相似文献   

14.
采用二次饱和-D最优设计的方法,研究Sr(NO3)2(x1)、KH2PO4(x2)和Na2B4O7·10H2O(x3)叶面喷施对秦油2号油菜的产量效应,获得回归方程:y=247.485+7.0048x1+2.29244x2—9.82646x3—0.2535x1x2—13.8524x1x3:—3.37475x2x3+27.0575X21—16.3036x22—8.7678x23结果表明St(NO3)2。有明显的增产作用.x1x3的交互作用(效应)最大.通过计算机模拟.其最佳因子组合为Sr(NO3),0.1%、KH2PO40.3%和硼砂0.01%,预计产量可达296.46kg/667m2.  相似文献   

15.
The hydrothermal reactions of a vanadium source, an appropriate diphosphonate ligand, and water in the presence of HF provide a series of compounds with neutral V-P-O networks as the recurring structural motif. When the {O3P(CH2)(n)PO3}4- diphosphonate tether length n is 2-5, metal-oxide hybrids of type 1, [V2O2(H2O){O3P(CH2)(n)PO3}] x xH2O, are isolated. The type 1 oxides exhibit the prototypical three-dimensional (3-D) "pillared" layer architecture. When n is increased to 6-8, the two-dimensional (2-D) "pillared" slab structure of the type 2 oxides [V2O2(H2O)4{O3P(CH2)6PO3}] is encountered. Further lengthening of the spacer to n = 9 provides another 3-D structure, type 3, constructed from the condensation of pillared slabs to give V-P-O double layers as the network substructure. When organic cations are introduced to provide charge balance for anionic V-P-O networks, oxides of types 4-7 are observed. For spacer length n = 3, a range of organodiammonium cations are accommodated by the same 3-D "pillared" layer oxovanadium diphosphonate framework in the type 4 materials [H3N(CH2)(n)NH3][V4O4(OH)2 {O3P(CH)3PO3}2] x xH2O [n = 2, x = 6 (4a); n = 3, x = 3 (4b); n = 4, x = 2 (4c); n = 5, x = 1 (4d); n = 6, x = 0.5 (4e); n = 7, x = 0 (4f)] and [H3NR]y[V4O4(OH)2 {O3P(CH)3PO3}2] x xH2O [R = -CH2(NH3)CH2CH3, y = 1, x = 0 (4g); R = -CH3, n = 2, x = 3 (4h); R = -CH2CH3, y = 2, x = 1 (4i); R = -CH2CH2CH3, y = 2, x = 0 (4j); cation = [H2N(CH2CH3)2], y = 2, x = 0 (4k)]. These oxides exhibit two distinct interlamellar domains, one occupied by the cations and the second by water of crystallization. Furthermore, as the length of the cation increases, the organodiammonium component spills over into the hydrophilic domain to displace the water of crystallization. When the diphosphonate tether length is increased to n = 5, structure type 5, [H3N(CH2)2NH3][V4O4(OH)2(H2O){O3P(CH2)5PO3}2] x H2O, is obtained. This oxide possesses a 2-D "pillared" network or slab structure, similar in gross profile to that of type 2 oxides and with the cations occupying the interlamellar domain. In contrast, shortening the diphosphonate tether length to n = 2 results in the 3-D oxovanadium organophosphonate structure of the type 7 oxide [H3N(CH2)5NH3][V3O3{O3P(CH2)2PO3}2]. The ethylenediphosphonate ligand does not pillar V-P-O networks in this instance but rather chelates to a vanadium center in the construction of complex polyhedral connectivity of 7. Substitution of piperazinium cations for the simple alkyl chains of types 4, 5, and 7 provides the 2-D pillared layer structure of the type 6 oxides, [H2N(CH2CH2)NH2][V2O2{O3P(CH)(n)PO3H}2] [n = 2 (6a); n = 4 (6b); n = 6 (6c)]. The structural diversity of the system is reflected in the magnetic properties and thermal behavior of the oxides, which are also discussed.  相似文献   

16.
The potential energy surface for the O((3)P) + C(2)H(4) reaction, which plays an important role in C(2)H(4)/O(2) flames and in hydrocarbon combustion in general, was theoretically reinvestigated using various quantum chemical methods, including G3, CBS-QB3, G2M(CC,MP2), and MRCI. The energy surfaces of both the lowest-lying triplet and singlet electronic states were constructed. The primary product distribution for the multiwell multichannel reaction was then determined by RRKM statistical rate theory and weak-collision master equation analysis using the exact stochastic simulation method. Intersystem crossing of the "hot" CH(2)CH(2)O triplet adduct to the singlet surface, shown to account for about half of the products, was estimated to proceed at a rate of approximately 1.5 x 10(11) s(-1). In addition, the thermal rate coefficients k(O + C(2)H(4)) in the T = 200-2000 K range were computed using multistate transition state theory and fitted by a modified Arrhenius expression as k(T) = 1.69 x 10(-16) x T(1.66) x exp(-331 K/T) . Our computed rates and product distributions agree well with the available experimental results. Product yields are found to show a monotonic dependence on temperature. The major products (with predicted yields at T = 300 K/2000 K) are: CH(3) + CHO (48/37%), H + CH(2)CHO (40/19%), and CH(2)(X(3)B(1)) + H(2)CO (5/29%), whereas H + CH(3)CO, H(2) + H(2)CCO, and CH(4) + CO are all minor (< or =5%).  相似文献   

17.
The hydrothermal reactions of a Cu(II) starting material, a molybdate source, 2,2'-bipyridine or terpyridine, and the appropriate alkyldiphosphonate ligand yield two series of bimetallic organophosphonate hybrid materials of the general types [Cu(n)(bpy)(m)Mo(x)O(y)(H(2)O)(p)[O(3)P(CH(2))(n)PO(3)](z)] and [Cu(n)(terpy)(m)Mo(x)O(y)(H(2)O)(p)[O(3)P(CH(2))(n)PO(3)](z)]. The bipyridyl series includes the one-dimensional materials [Cu(bpy)(MoO(2))(H(2)O)(O(3)PCH(2)PO(3))] (1) and [[Cu(bpy)(2)][Cu(bpy)(H(2)O)](Mo(5)O(15))(O(3)PCH(2)CH(2)CH(2)CH(2)PO(3))].H(2)O (5.H(2)O) and the two-dimensional hybrids [Cu(bpy)(Mo(2)O(5))(H(2)O)(O(3)PCH(2)PO(3))].H(2)O (2.H(2)O), [[Cu(bpy)](2)(Mo(4)O(12))(H(2)O)(2)(O(3)PCH(2)CH(2)PO(3))].2H(2)O (3.2H(2)O), and [Cu(bpy)(Mo(2)O(5))(O(3)PCH(2)CH(2)CH(2)PO(3))](4). The terpyridyl series is represented by the one-dimensional [[Cu(terpy)(H(2)O)](2)(Mo(5)O(15))(O(3)PCH(2)CH(2)PO(3))].3H(2)O (7.3H(2)O) and the two-dimensional composite materials [Cu(terpy)(Mo(2)O(5))(O(3)PCH(2)PO(3))] (6) and [[Cu(terpy)](2)(Mo(5)O(15))(O(3)PCH(2)CH(2)CH(2)PO(3))] (8). The structures exhibit a variety of molybdate building blocks including isolated [MoO(6)] octahedra in 1, binuclear subunits in 2, 4, and 6, tetranuclear embedded clusters in 3, and the prototypical [Mo(5)O(15)(O(3)PR)(2)](4-) cluster type in 5, 7, and 8. These latter materials exemplify the building block approach to the preparation of extended structures.  相似文献   

18.
Three new calcium phenylphosphonates, CaC(6)H(5)PO(3).2H(2)O, Ca(3)(C(6)H(5)PO(3)H)(2)(C(6)H(5)PO(3))(2).4H(2)O, and CaC(6)H(5)PO(3).H(2)O, and two calcium 4-carboxyphenylphosphonates, Ca(HOOCC(6)H(4)PO(3)H)(2) and Ca(3)(OOCC(6)H(4)PO(3))(2).6H(2)O, were prepared. It was found that CaC(6)H(5)PO(3).2H(2)O transformed into previously known Ca(C(6)H(5)PO(3)H)(2) via Ca(3)(C(6)H(5)PO(3)H)(2)(C(6)H(5)PO(3))(2).4H(2)O in the presence of phenylphosphonic acid, and vice versa, Ca(C(6)H(5)PO(3)H)(2) turned into CaC(6)H(5)PO(3).2H(2)O in a weak basic medium. A similar relationship was found between Ca(HOOCC(6)H(4)PO(3)H)(2) and Ca(3)(OOCC(6)H(4)PO(3))(2).6H(2)O; i.e., Ca(3)(OOCC(6)H(4)PO(3))(2).6H(2)O transformed into Ca(HOOCC(6)H(4)PO(3)H)(2) in the presence of 4-carboxyphenylphosphonic acid. On the contrary, Ca(3)(OOCC(6)H(4)PO(3))(2).6H(2)O is formed from Ca(HOOCC(6)H(4)PO(3)H)(2) in the presence of ammonium as a weak base. The structure of Ca(HOOCC(6)H(4)PO(3)H)(2) was solved from X-ray powder diffraction data by an ab initio method using a FOX program. The compound is monoclinic, space group C2/c (No. 15), a = 49.218(3) A, b = 7.7609(4) A, c = 5.4452(3) A, beta = 128.119(3) degrees , and Z = 4. Its structure is one-dimensional with [Ca(2)(HOOCC(6)H(4)PO(3)H)(4)](infinity) ribbons forming basic building blocks. The ribbons are held together by hydrogen bonds between carboxylic groups.  相似文献   

19.
Two new uranium(Ⅵ) phosphonate compounds,namely K8[N(C2H5)4]2(UO2)17(H2O)4[CH2(PO3)2]8[CH2(PO3)(PO3H)]4·16(H2O) (1) and[N(C2H5)4]4(H3O)2(UO2)10[CH2(PO3)2]5[CH2(...  相似文献   

20.
When peroxotetramolybdophosphate, [(n-C4H9)4N]3[PO4[Mo2O2(mu-O2)2(O2)2]2], denoted (NBu4)3PMo4, and its tungsten(VI) analogue, (NBu4)3PW4, are mixed in acetonitrile at room temperature, redistribution occurs with the formation of three mixed-addenda species [PO4[Mo4-xWxO20]]3- (x = 1-3). The temperature dependence of the phosphorus-31 NMR spectra of a 1 1 mixture and of the pure salts, (NBu4)3PMo4 or (NBu4)3PW4, shows that [MO(O2)2] species are in chemical exchange, as are the [MOp] units of certain heteropolyacids (e.g. H3[PMo12O40] x aq and H3[PW12O40] x aq). However, there is no chemical exchange between free phosphate and [MO(O2)2] species in these systems; but there is fluxional behaviour involving PMo2W2, PMo4 and PW4. This is attributed to the rapid equilibrium between isomers (PMo2W2) and to equilibrium between anionic structures with tridentate (mu-eta2:eta1-O22-) and bidentate (eta2-O22-) modes of coordination for the two peroxo groups of the [M2O2(mu-O2)2(O2)2] moieties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号