首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leukemic cells are hard-to-transfect cell lines. Many transfection reagents which can provide high gene transfer efficiency in common adherent cell lines are not effective to transfect established blood cell lines or primary leukemic cells. This study aims to examine a new class of cationic polymer non-viral vector, PEGylated–dextran–spermine (PEG-D-SPM), to determine its ability to transfect the leukemic cells. Here, the optimal conditions of the complex preparation (PEG-D-SPM/plasmid DNA (pDNA)) were examined. Different weight-mixing (w/w) ratios of PEG-D-SPM/pDNA complex were prepared to obtain an ideal mixing ratio to protect encapsulated pDNA from DNase degradation and to determine the optimal transfection efficiency of the complex. Strong complexation between polymer and pDNA in agarose gel electrophoresis and protection of pDNA from DNase were detected at ratios from 25 to 15. Highest gene expression was detected at w/w ratio of 18 in HL60 and K562 cells. However, gene expression from both leukemic cell lines was lower than the control MCF-7 cells. The cytotoxicity of PEG-D-SPM/pDNA complex at the most optimal mixing ratios was tested in HL60 and K562 cells using MTS assay and the results showed that the PEG-D-SPM/pDNA complex had no cytotoxic effect on these cell lines. Spherical shape and nano-nature of PEG-D-SPM/pDNA complex at ratio 18 was observed using transmission electron microscopy. As PEG-D-SPM showed modest transfection efficiency in the leukemic cell lines, we conclude that further work is needed to improve the delivery efficiency of the PEG-D-SPM.  相似文献   

2.
The leading principle of non-viral delivery systems for gene therapy is to mediate high levels of gene expression with low cytotoxicity. Nowadays, biodegradable nanoparticles formulated with poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) were wildly developed. However, the relative lower gene transfection efficiency and higher cytotoxicity still remained critical problems. To address these limitations, PLA-PEG nanoparticles have been composited with other components in their formulation. Here, a novel cationic lipid, 6-lauroxyhexyl lysinate (LHLN), was fabricated onto PLA-PEG nanoparticles as a charge modifier to improve the transfection efficiency and cytotoxicity. The obtained cationic LHLN modified PLA-PEG nanoparticles (LHLN-PLA-PEG NPs) could condense pDNA thoroughly via electrostatic force, leading to the formation of the LHLN-PLA-PEG NPs/pDNA complexes (NPs/DNA complexes). The nanoparticles obtained have been characterized in relation to their physicochemical and biological properties, and the results are extremely promising in terms of low cell toxicity and high transfection efficiency. These results indicated that the novel cationic LHLN modified PLA-PEG nanoparticles could enhance gene transfection in vitro and hold the potential to be a promising non-viral nanodevice.  相似文献   

3.
通过琥珀酸酐将低分子量支化聚乙烯亚胺(PEI, 分子量1000)偶联到普鲁兰多糖(Pullulan)上, 合成了新型基因载体P-PEI. 利用 1H NMR、 FTIR、 粒度仪、 Zeta电位仪、 透射电镜和凝胶电泳对聚阳离子载体及其与质粒pDNA 的复合物进行了表征. 凝胶阻滞实验结果证明, 载体P-PEI在体外可以通过静电相互作用稳定结合pDNA, 并能有效抑制DNA水解酶及血清成分对pDNA的降解. 噻唑蓝(MTT)细胞毒性测试、 绿色荧光蛋白表达质粒(pGFP)及荧光素酶表达质粒(pGL3)转染实验结果表明, 载体P-PEI在N/P高达12.5时对细胞MCF-7, HeLa和COS-7的毒性低于PEI; 当N/P 为6.25时能有效将pGFP和pGL3带入Hela 细胞并表达, 最佳转染效率及荧光素酶活分别为, 比Lipo 2000[(49.13±0.61)%, (58.47±7.62)×108 RLU/mg蛋白) 略低. 因此以Pullulan为骨架材料的P-PEI是一种新的有潜在应用价值的非病毒基因载体.  相似文献   

4.
This study sought to evaluate the in vitro transfection efficiency of plasmid DNA (pDNA)-loaded chitosan-modified poly(DL-lactide-co-glycolide) nanospheres (CS-PLGA NS) in a gene-delivery system. Using the emulsion solvent diffusion (ESD) method, pDNA-loaded PLGA NS was prepared and the surface of the PLGA NS was modified by binding to CS. Gene transfection ability of CS-PLGA NS was examined in A549 cells. The luciferase gene was used as a reporter gene. The pattern of luciferase activity by pDNA-loaded CS-PLGA NS was initially weak, but gradually grew stronger before decreasing activity. These phenomena should be in accordance with the sustained-release profile of pDNA from PLGA NS in the cytosol and the pDNA protection against DNase. Positively charged CS-PLGA NS was found, by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay, not to exhibit cytotoxicity on A549 cells. These results suggest that CS-PLGA NS are potential contributors to efficient pDNA delivery due to their increased interactions with cells and lack of cytotoxic effects.  相似文献   

5.
Lin YC  Li M  Wu CC 《Lab on a chip》2004,4(2):104-108
Simulation and experimental demonstration of the in vitro gene delivery enhancement using electrostatic forces and electroporation (EP) microchips were conducted. Electroporation is a technique with which DNA molecules can be delivered into cells using electric field pulses. This study demonstrates that plasmid DNA can be attracted to the cell surfaces at the specific regions using an electrostatic force. Therefore, the DNA concentration on the cell surface is dramatically increased, which highly enhances the gene transfection efficiency compared to that without an attracting-electric field. The electrostatic force can be designed into specific regions, where the DNA plasmids are attracted to, to provide the region-targeting function. In this micro-device, the top electrode and the interdigitated electrodes provided the DNA attracting-electric field, and the interdigitated electrodes provided adequate electric fields for the electroporation process on the chip surface. Using the EP microchip, cells could be manipulated in situ without detachment if adherent cells were used for electroporation. Five different cells of two different types, primary cell and cell line, were successfully transfected under multi-pulse or single pulse electric field stimulation without applying an attracting-electric field. This study simulated and analyzed the electric field distributions at the DNA attracting and electroporation processes, and successfully demonstrated that the electrostatic force attracted DNA plasmids to specific regions and highly enhanced the gene delivery. In summary, this EP microchip should provide many potential applications for gene therapy.  相似文献   

6.
Low transfection efficiency is always an issue when cationic polymers are used as a nonviral gene vector in the physiological condition, especially in the presence of proteins. A cationic magnetic nanoparticle (MNP) may be an alternative to solve this problem because a magnetic field can help to attract the MNP and internalize it into cells. The aim of this study was to determine the potency of polyethylenimine (PEI)-decorated MNPs for efficiently complexing and delivering plasmid DNA in vitro with the help of a magnetic field. PEI is associated with poly(acrylic acid)-bound superparamagnetic iron oxide (PAAIO) through electrostatic interactions (PEI-PAAIO). PEI-PAAIO formed stable polyplexes with pDNA in the presence and absence of 10% fetal bovine serum (FBS) and could be used for magnetofection. The effect of a static magnetic field on the cytotoxicity, cellular uptake, and transfection efficiency of PEI-PAAIO/pDNA was evaluated with and without 10% FBS. Magnetofection efficacy in HEK 293T cells and U87 cells containing 10% FBS was significantly improved in the presence of an external magnetic field. The amount of internalized iron was quantitatively measured using an inductively coupled plasma-optical emission spectrometer and directly visualized using Prussian blue staining. The internalized pDNA was visualized using a confocal laser scanning microscope.  相似文献   

7.
Cationic polymers with high charge density could effectively condense the DNA and achieve gene transfection; however, it often brings non-negligible cytotoxicity. Notably, the high charge density gene vector fails in the serum environment, limiting further application in vivo. In this paper, an efficient and reliable non-viral gene vector of poly (amidoamine) (PAA) was designed by introducing diacryolyl-2,6-diaminopyridine (DADAP) onto the PAA backbone through Michael-addition polymerization, which provides high transfection efficiency in a serum-containing environment. Diacryolyl-2,6-diaminopyridine and cationic parts provided multiple interactions between gene vectors and DNA, including hydrogen bond and electrostatic interactions. The introduction of hydrogen bonding can effectively reduce the charge density of polyplexes without reducing the DNA condensing ability, incorporating the diaminopyridine group and cationic part in PAA chains successfully consolidated cellular uptake, endosome destabilization, and transfection efficiency for the PAA/DNA complexes with low cytotoxicity. The constructed vector with multiple interactions presented 6 times higher transfection efficiency in serum-free and 9 times in serum-containing environment than that of branched polyethyleneimine (PEI 25K) in 293T cells in vitro. Therefore, introducing the hydrogen band to form low charge density polyplexes with high transfection efficiency and low cytotoxicity has a great potential in gene delivery.  相似文献   

8.
传统的非病毒载体基于分子间静电自组装作用与核酸结合,组装的复合物在体内复杂的环境中容易发生结构解离,共价结合的交联聚合物载体有望成为解决传统非病毒载体结构稳定性差的有效方案。选择N-(3-氨丙基)甲基丙烯酰胺盐酸盐、1-乙烯基咪唑、2-甲基丙烯酰氧乙基磷酸胆碱与N,N′-双(丙稀酰)胱胺作为多功能性单体,采用原位聚合方法制备包载质粒DNA(pDNA)的交联聚合物-pDNA复合物。其中,共价键为载体提供优异的结构稳定性;1-乙烯基咪唑能够响应胞内溶酶体酸性微环境,触发质子海绵效应便于复合物的溶酶体逃逸;N,N′-双(丙稀酰)胱胺的二硫键可以响应胞内高水平的谷胱甘肽(GSH),实现复合物在细胞内部选择性解聚,释放内含pDNA。研究表明,该复合物平均水合半径约135 nm,ζ电势约−6.5 mV,形貌近似球形。该复合物可在10 mg/mL肝素环境中保持结构稳定性,具有响应细胞内GSH,触发释放包载核酸分子的功能。细胞实验证明该复合物细胞毒性低。细胞摄取、转染能力强。综上所述,基于原位聚合技术制备交联聚合物载体在基因递送领域具有重要应用前景,本研究为新型基因递送载体的开发提供了新思路。  相似文献   

9.
Electroporation microarrays have been developed for the high-throughput transfection of expression constructs and small interfering RNAs (siRNAs) into living mammalian cells. These techniques have potential to provide a platform for the cell-based analysis of gene functions. One of the key issues associated with microarray technology is the efficiency of transfection. The capability of attaining reasonably high transfection efficiency is the basis for obtaining functional data without false negatives. In this study, we aimed at improving the transfection efficiency in the system that siRNA loaded on an electrode is electroporated into cells cultured directly on the electrode. The strategy we adopted here is to increase the surface density of siRNA loaded onto electrodes. For this purpose, the layer-by-layer assembly of siRNA and cationic polymers, branched or linear form of poly(ethyleneimine), was performed. The multilayer thus obtained was characterized by infrared reflection-adsorption spectroscopy and surface plasmon resonance analysis. Transfection efficiency was evaluated in a system that siRNA specific for enhanced green fluorescent protein (EGFP) was electroporated on the electrode into human embryonic kidney cells stably transformed with the EGFP gene. The suppression of EGFP expression was assessed by fluorescence microscopy and flow cytometry. Our data showed that the layer-by-layer assembly of siRNA with branched poly(ethyleneimine) facilitated to increase the surface density of loaded siRNA. As a result, the expression of EGFP gene in the electroporated cells was suppressed much more on the electrodes with the multilayer of siRNA than that with the monolayer.  相似文献   

10.
We have engineered a novel, non-viral, multifunctional gene vector (STR-CH(2)R(4)H(2)C) that contained stearoyl (STR) and a block peptide consisting of Cys (C), His (H), and Arg (R). STR-CH(2)R(4)H(2)C can form a stable nano-complex with plasmid DNA (pDNA) based on electronic interactions and disulfide cross linkages. In this study, we evaluated the efficacy of STR-CH(2)R(4)H(2)C as a gene vector. We first determined the optimal weight ratio for STR-CH(2)R(4)H(2)C/pDNA complexes. The complexes with a weight ratio of 50 showed the highest transfection efficacy. We also examined the transfection efficacy of STR-CH(2)R(4)H(2)C/pDNA complexes with or without serum and compared STR-CH(2)R(4)H(2)C/pDNA transfection efficacy with that of Lipofectamine. Even in the presence of serum, STR-CH(2)R(4)H(2)C showed higher transfection efficacy than did Lipofectamine. In addition, we determined the mechanism of transfection of the STR-CH(2)R(4)H(2)C/pDNA complexes using various cellular uptake inhibitors and evaluated its endosomal escape ability using chloroquine. Macropinocytosis was main cellular uptake pathway of STR-CH(2)R(4)H(2)C/pDNA complexes. Our results suggested that STR-CH(2)R(4)H(2)C is a promising gene delivery system.  相似文献   

11.
The development of polymers with low toxicity and efficient gene delivery remains a significant barrier of nonviral gene therapy. Modification and tuning of chemical structures of carriers is an attractive strategy for efficient nucleic acid delivery. Here, polyplexes consisting of plasmid DNA (pDNA) and dodecylated or non‐dodecylated polysuccinimide (PSI)‐based polycations are designed, and their transfection ability into HeLa cells is investigated by green fluorescent protein (GFP) expressing cells quantification. All cationic polymers show lower cytotoxicity than those of branched polyethyleneimine (bPEI). PSI and bPEI‐based polyplexes have comparable physicochemical properties such as size and charge. Interestingly, a strong interaction between dodecylated polycations and pDNA caused by the hydrophobic moiety is observed in dodecylated PSI derivatives. Moreover, the decrease of GFP expression is associated with lower dissociation of pDNA from polyplexes according to the heparin displacement assay. Besides, a hydrophobization of PSI cationic derivatives with dodecyl side chains can modulate the integrity of polyplexes by hydrophobic interactions, increasing the binding between the polymer and the DNA. These results provide useful information for designing polyplexes with lower toxicity and greater stability and transfection performance.  相似文献   

12.
The layer-by-layer assembly technique was used to adsorb alternately poly(ethyleneimine) and plasmid DNA onto the surface of a transparent electrode made of indium-tin oxide. The surface with adsorbed poly(ethyleneimine) and DNA was characterized by X-ray photoelectron spectroscopy, attenuated total reflectance Fourier transform infrared spectroscopy, and contact angle measurements. These analyses revealed that the alternate adsorption process generated a multilayered assembly of cationic poly(ethyleneimine) and anionic DNA. For the spatially and temporally specific gene transfer, cells were cultured on the plasmid-loaded electrode and then a short electric pulse was applied to the cell-electrode system. It was shown that, upon electric pulsing, the plasmid was released from the electrode and transferred into the cells, resulting in efficient gene expression even in primary cultured cells. Transfection could be effected for hippocampal neurons after 3-day culture on the plasmid-loaded electrode, which indicated the feasibility of selecting the time of transfection. Our results also showed that electroporation could be performed in a spatially specific manner by using a plasmid-arrayed electrode, demonstrating the feasibility of the method for the fabrication of transfected cell microarrays.  相似文献   

13.
Bovine serum albumin(BSA) was modified through a facile synthesis method to increase its isoelectric point(pI) from 4.8 to 6.0.When pH is higher than 6.0,the protein shows a negative surface charge,on the contrary,the protein is positively charged.In this study,the charge-reversal modified BSA(crBSA) was utilized to assemble with the binary complexes of pDNA/poly(vinylpyrrolidone)-graft-poly(2-dimethylaminoethyl methacrylate)(pDNA/PVP-g-PDMAEMA) to shield the excess positive charges of complexes at physiological pH(pH 7.4).When the complex coated with crBSA located in the environment at endosomal pH(pH 5.0),the charge-reversal of crBSA led to the deviation of crBSA from polyplex by electrostatic repulsion,which would benefit the transfection of the target gene.The crBSA shows great potential for improving the transfection efficiency of pDNA/PVP-g-PDMAEMA.  相似文献   

14.
Huang KS  Lin YC  Su CC  Fang CS 《Lab on a chip》2007,7(1):86-92
In this paper a new electroporation (EP) system is developed, which includes an EP microchip and a logic circuit, which combined with electrophoresis (ES), can provide site-specific enhancement of gene concentration. In this ES-EP microchip, an arc planar electrode provides the ES function for DNA attraction, and interdigitated array electrodes provide appropriate electric fields for the EP on the chip surface. In addition, the adherent cells can be manipulated in situ without detachment of the ES-EP microchip, which performs the "Lab on a chip". Experimental results have shown that the efficiency of gene transfection with an attracting-electric field (35.89%) becomes much higher than that without an attracting-electric field (16.62%). Cell numbers as low as 10(4) cells, and DNA as little as 4 microg are sufficient for evaluating the phenotypic effects following the over-expression of the introduced genes on the ES-EP microchip. The proposed system has the advantages of portability, cost-effectiveness, a high transfection rate and ease of operation.  相似文献   

15.
This paper describes the fabrication of microarrays that enable the parallel electroporation of small interfering RNAs (siRNAs) into mammalian cells. To optimize the conditions of microarray preparation and electric pulsing, a self-assembled monolayer was formed on a gold electrode, and a cationic polymer was adsorbed by the entire surface of the monolayer. siRNA was then adsorbed by the cationically modified electrode through electrostatic interactions. Human embryonic kidney cells stably transformed with the expression construct of green fluorescent protein (GFP) were used to examine the electric pulse-triggered transfer of GFP-specific siRNA. A single electric pulse was applied to the cells cultured on the electrode at a field strength of 240 V cm(-1). The expression of GFP was significantly suppressed in a sequence-specific manner two days after pulsing. Microscopic observation and flow-cytometric analysis revealed that the expression of GFP was attenuated in the majority of cells in a loading-dependent manner. Moreover, the effect of siRNA could be temporally controlled by changing the culture periods before pulsing. When a micropatterned self-assembled monolayer was used as a platform for loading siRNA in an array format, gene silencing was spatially restricted to the regions where specific siRNA was loaded. From these results, we conclude that array-based electroporation provides an excellent means of individual transfer of siRNAs into mammalian cells for high-throughput gene function studies.  相似文献   

16.
Low efficiency is often observed in the delivery of DNA vaccines. The use of superparamagnetic nanoparticles (SPIONs) to deliver genes via magnetofection could improve transfection efficiency and target the vector to its desired locality. Here, magnetofection was used to enhance the delivery of a malaria DNA vaccine encoding Plasmodium yoelii merozoite surface protein MSP1(19) (VR1020-PyMSP1(19)) that plays a critical role in Plasmodium immunity. The plasmid DNA (pDNA) containing membrane associated 19-kDa carboxyl-terminal fragment of merozoite surface protein 1 (PyMSP1(19)) was conjugated with superparamagnetic nanoparticles coated with polyethyleneimine (PEI) polymer, with different molar ratio of PEI nitrogen to DNA phosphate. We reported the effects of SPIONs-PEI complexation pH values on the properties of the resulting particles, including their ability to condense DNA and the gene expression in vitro. By initially lowering the pH value of SPIONs-PEI complexes to 2.0, the size of the complexes decreased since PEI contained a large number of amino groups that became increasingly protonated under acidic condition, with the electrostatic repulsion inducing less aggregation. Further reaggregation was prevented when the pHs of the complexes were increased to 4.0 and 7.0, respectively, before DNA addition. SPIONs/PEI complexes at pH 4.0 showed better binding capability with PyMSP1(19) gene-containing pDNA than those at neutral pH, despite the negligible differences in the size and surface charge of the complexes. This study indicated that the ability to protect DNA molecules due to the structure of the polymer at acidic pH could help improve the transfection efficiency. The transfection efficiency of magnetic nanoparticle as carrier for malaria DNA vaccine in vitro into eukaryotic cells, as indicated via PyMSP1(19) expression, was significantly enhanced under the application of external magnetic field, while the cytotoxicity was comparable to the benchmark nonviral reagent (Lipofectamine 2000).  相似文献   

17.
Nonviral vectors have been attracting more attention for several advantages in gene delivery and the development of nonviral gene ca rriers with high delivery efficiency and low cytotoxicity has long been a key project.Starburst polyamidoamine dendrimers are a class of synthetic polymers with unique structural and physical characteristics.However,when they are used as gene carrier,the gene transfection efficiency is not satisfactory.Herein,a novel thioketal-core polyamidoamine dendrimer(i.e.,ROS-PAMAM)was synthesized and characterized.Compared to ethylenediamine-core dendrimers or widely used cationic polymers of polyetherimide,ROS-PAMAM showed lower cytotoxicity.Moreover,ROS-PAMAM demonstrated reactive oxygen species responsive characteristics,which can facilitate the release of siRNA in the tumor microenvironment.In vitro gene transfection experiments based on A549 cells confirmed that siRNA/ROS-PAMAM exhibits high gene transfection efficiency.It is concluded that ROS-PAMAM shows great potential as a generalizable vehicle for gene therapy applications.  相似文献   

18.
高效安全的基因传递体系是基因技术发展的关键问题. 基于聚阳离子的基因纳米微球是一种典型的非病毒型基因载体, 能够在体内外有效转染细胞. 本文通过层层组装方法构建装载基因纳米微球的可降解多层膜, 这种固相基因传递体系能实现材料表面的贴壁细胞的原位转染. 与装载裸DNA的多层膜相比, 基因纳米微球多层膜能更有效地原位转染贴壁细胞, 这主要是因为DNA在此多层膜中仍处于与聚阳离子缔合的状态. 构建于聚乳酸三维支架表面的基因纳米微球多层膜亦能实现支架表面贴壁细胞的原位转染. 这种结构可控、易制备的基因纳米微球多层膜为精确控制基因纳米微球传递提供了一种新方法, 也为基因治疗进一步应用于组织工程、介入治疗和医用植入体提供了一种可能的技术手段.  相似文献   

19.
20.
探索非病毒基因载体聚乙二醇-聚乙烯亚胺共聚物(PEI-g-MPEG)介导白细胞介素-10(Interleukin-10,IL-10)体外转染原代培养背根神经节细胞(dorsal root ganglion cells,DRGs)的效果.采用本实验室设计合成的PEI-g-MPEG,与同时携带增强型绿色荧光蛋白报告基因及IL-10基因的真核表达质粒DNA(pDC316-EGFP/IL-10)形成复合物,以脂质体(lipofectamine)复合体系Lipo/pDNA为对照,通过溴乙啶(ethidiumbromide,EB)排斥实验、凝胶阻滞电泳实验、粒径与电位的测定及扫描电镜等实验方法观察PEI-g-MPEG/pDNA的复合效果.并且检测了复合物对DRGs的毒性、转染效果及IL-10的蛋白表达情况.结果表明,PEI-g-MPEG在N/P(PEI-g-MPEG所含的氮原子和质粒DNA中磷原子的摩尔比)为5时可完全复合pDNA;随着N/P的增大,PEI-g-MPEG/pDNA复合物的粒径逐渐减小,而表面电位逐渐增大;在N/P为15时报告基因转染效果和IL-10蛋白表达情况较好,复合物的形貌呈大小均一的球形.PEI-g-MPEG/IL-10基因传递系统对于神经病理性疼痛的基因治疗具有潜在应用价值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号