首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis and characterization of several new coordination compounds of dioxouranium(VI) heterochelates with bidentate hydrazono compounds derived from 1-phenyl-3-methyl-5-pyrazolone are described. The ligands and uranayl complexes have been characterized by various physico-chemical techniques. The bond lengths and the force constant have been calculated from asymmetric stretching frequency of OUO groups. The infrared spectral studies showed a monobasic bidentate behaviour with the oxygen and hydrazo nitrogen donor system. The effect of Hammett's constant on the bond distances and the force constants were also discussed and drawn. Wilson's matrix method, Badger's formula, Jones and El-Sonbati equations were used to determine the stretching and interaction force constant from which the UO bond distances were calculated. The bond distances of these complexes were also investigated.  相似文献   

2.
3.
The extraction of dioxouranium(VI) species from acidic aqueous solutions into benzene, in the presence of dialkyldithiophosphoric acids occurs with moderate partition coefficients, increasing with the length of the alkyl chain. The mechanism involves the formation of neutral [UO2[S2P(OR)2]2] species soluble in benzene, the partition is strongly affected by complexation in the aqueous phase, when the alkyl chain is short. Distribution coefficients and extraction constants have been determined under various conditions.  相似文献   

4.
The synthesis and characterization of the dioxouranium(VI) dibromide and iodide hydrates, UO(2)Br(2)x3H(2)O (1), [UO(2)Br(2)(OH(2))(2)](2) (2), and UO(2)I(2)x2H(2)Ox4Et(2)O (3), are reported. Moreover, adducts of UO(2)I(2) and UO(2)Br(2) with large, bulky OP(NMe(2))(3) and OPPh(3) ligands such as UO(2)I(2)(OP(NMe(2))(3))(2) (4), UO(2)Br(2)(OP(NMe(2))(3))(2) (5), and UO(2)I(2)(OPPh(3))(2)(6) are discussed. The structures of the following compounds were determined using single-crystal X-ray diffraction techniques: (1) monoclinic, P2(1)/c, a = 9.7376(8) A, b = 6.5471(5) A, c = 12.817(1) A, beta = 94.104(1) degrees , V = 815.0(1) A(3), Z = 4; (2) monoclinic, P2(1)/c, a = 6.0568(7) A, b = 10.5117(9) A, c = 10.362(1) A, beta = 99.62(1) degrees , V = 650.5(1) A(3), Z = 2; (4) tetragonal, P4(1)2(1)2, a = 10.6519(3) A, b = 10.6519(3) A, c = 24.0758(6) A, V = 2731.7(1) A(3), Z = 4; (5) tetragonal, P4(1)2(1)2, a = 10.4645(1) A, b = 10.4645(1) A, c = 23.7805(3) A, V = 2604.10(5) A(3), Z = 4, and (6) monoclinic, P2(1)/c, a = 9.6543(1) A, b = 18.8968(3) A, c = 10.9042(2) A, beta =115.2134(5) degrees , V = 1783.01(5) A(3), Z = 2. Whereas 1 and 2 are the first UO(2)Br(2) hydrates and the last missing members of the UO(2)X(2) hydrate (X = Cl --> I) series to be structurally characterized, 4 and 6 contain room-temperature stable U(VI)-I bonds with 4 being the first structurally characterized room temperature stable U(VI)-I compound which can be conveniently prepared on a gram scale in quantitative yield. The synthesis and characterization of 5 using an analogous halogen exchange reaction to that used for the preparation of 4 is also reported.  相似文献   

5.
Crea F  Foti C  Sammartano S 《Talanta》2008,75(3):775-785
In this paper we report a comparison on the sequestering ability of some polycarboxylic ligands towards dioxouranium(VI) (UO(2)(2+), uranyl). Ligands taken into account are mono- (acetate), di- (oxalate, malonate, succinate and azelate), tri- (1,2,3-propanetricarboxylate) and hexa-carboxylate (1,2,3,4,5,6-benzenehexacarboxylate). The sequestering ability of polycarboxylic ligands towards UO(2)(2+) was quantified by a new approach expressed by means of a sigmoid Boltzman type equation and of a empirical parameters (pL(50)) which defines the amount of ligand necessary to sequester 50% of the total UO(2)(2+) concentration. A fairly linear correlation was obtained between pL(50) or log K(110) (log K(110) refers to the equilibrium: UO(2)(2+)+L(z-)=UO(2)L((2-z)); L=generic ligand) and the polyanion charges. In order to complete the picture, a tetra-carboxylate ligand (1,2,3,4-butanetetracarboxylate) was studied in NaCl aqueous solutions at 0相似文献   

6.
7.
Potentially bi- and tetra-dentateSchiff bases derived from salicylaldehyde react with hydrated uranyl salts to give complexes: UO2H2 LX 2, UO2H2 LX 2 and UO2(HL)2 X 2 [H2 L=N,N-propane-1,3-diylbis(salicylideneimine), H2 L=N,N-ethylenebis(salicylideneimine) and HL=N-phenylsalicylideneimine;X =Cl, Br, I, NO3 , ClO4 , and NCS]. Because of marked spectral similrities with the structurally known Ca(H2 L) (NO3)2, theSchiff bases are coordinated through the negatively charged phenolic oxygen atoms and not the nitrogen atoms of the azomethine groups which carry the protons transferred from phenolic groups on coordination. Halide, nitrate, perchlorate and thiocyanate groups are covalently bonded to the uranyl ion, resulting a 6-coordinated uranium ion in the halo and thiocyanato complexes and 8-coordinated in nitrato and perchlorato complexes.
Komplexe von Dioxouranyl(VI) mit zwitterionischen Formen von zwei- und vierzähnigen Schiff-Basen
Zusammenfassung Von Salizylaldehyd abgeleitete zwei- und vierzähnigeSchiff-Basen reagieren mit hydratisierten Uranylsalzen zu Komplexen folgenden Typs: UO2H2 LX 2, UO2H2 LX 2 und UO2(HL)2 X 2 [H2 L=N,N-Propan-1,3-diylbis(salicylidenimin), H2 L=N,N-Ethylen-bis(salicylidenimin) und HL=N-Phenylsalicylidenimin;X =Cl, Br, I, NO3 , ClO4 und NCS]. Auf Grund eindeutiger spektraler Ähnlichkeiten mit dem bekannten Ca(H2 L) (NO3)2 wird auf Koordination über die negativ geladenen phenolischen Sauerstoffatome (und nicht über die Azomethin-Stickstoffe) geschlossen. Die AnionenX sind kovalent an das Uranyl-Ion gebunden; damit ergibt sich ein hexakoordiniertes Uranyl-Ion für die Halogen- und Thiocyanat-Komplexe und Oktakoordination für die Nitrat- und Perchlorat-Komplexe.
  相似文献   

8.
9.
11 and 12 molar reactions of dioxouranium(VI) acetate dihydrate with the monobasic bidentateSchiff bases,o-HOC6H4CH=NR oro-HOC10H6CH=NR (R=C2H5,n-C3H7,n-C4H9 or C6H5) and bibasic tridentateSchiff bases,o-HOC6H4CH=NR(OH) oro-HOC10H6CH=NR(OH) (R=–CH2CH(CH3)- or —CH2CH2CH2–) have been studied and derivates of the type UO2(OAc)2(SBH), UO2(OAc)2(SBH)2, UO2(OAc)2(SBH 2) and UO2(OAc)2(SBH 2)2 (whereSBH andSBH 2 represent monobasic bidentate and bibasic tridentateSchiff base molecules respectively) have been isolated. These have been characterized by elemental analysis, conductance measurements and IR spectral studies.
UO2 2+-Komplexe von Schiff-Basen. VII. Uranylacetat-Komplexe mit monobasischen zweizähnigen und bibasischen dreizähnigen Schiff-Basen
Zusammenfassung Es wurden in 1:1- und 1:2-molaren Reaktionen von UO2(OAc)2·2H2O mitSchiff-Basen (L) Komplexe des Typs UO2(OAc)2 L bzw. UO2(OAc)2 L 2 isoliert. Die Komplexe wurden mittels Elementaranalyse, Leitfähigkeitsmessungen und IR-Spektren untersucht.
  相似文献   

10.
11.
Some binary and ternary novel complexes of dioxouranium(VI) with 5-vinylsalicylaldehyde (VSH) have been prepared and characterized by various physico-chemical techniques. The amine exchange reactions of coordinated poly-Schiff bases in these complexes have been also carried out which give symmetrical tetradentate poly-Schiff base complexes. Metal exchange reaction of these dioxouranium(VI) complexes with copper(II) gives the corresponding Cu(II) complexes. Reaction of tetradentate poly-Schiff base complexes of Cu(II) so obtained with ZrCl4 gives heterobinuclear polymer complexes. Magnetic, electronic and IR spectral information commensurate that configurations of square planar copper(II) polymer complexes. All the polymer complexes are coloured and appear to be nonelectrolytes in DMF. The ligands behave as bi-(O, O) and tetradentate (N2, O2) donors. El-Sonbati equation was used to evaluate the symmetric stretching frequency from which the fU-O and fUO, UO- were calculated.  相似文献   

12.
The optimum conditions for the extractive spectrophotometric determination of dioxouranium(VI) with hexamethyleneiminecarbodithioate(HMICdt) have been established. Dioxouranium(VI) reacts with this ligand at pH 4.5 to form a yellowish-orange uncharged 12 metal-ligand complex which can be extracted by chloroform. The calibration graph was linear in the range of 1–20 g ml–1 of dioxouranium(VI) at 335 nm. The molar absorptivity of the extracted species is 5.952×103 l mol–1 cm–1 with Sandell's sensitivity of 0.04 g cm–2. The average of 10 determinations of dioxouranium was 49.75 g for the samples containing 50 g of U(VI) and the variation from the mean at 95% confidence limit was 49.75±0.5955.  相似文献   

13.
14.
New dioxouranium(VI) complexes with the tridentate dibasic Schiff bases derived from salicylaldehyde, 5-chlorosalicylaldehyde, 5-bromosalicylaldehyde, 5-nitrosalicylaldehyde, 3,5-dichlorosalicylaldehyde, 4-methoxysalicylaldehyde, 5-methoxysalicylaldehyde, 3-ethoxysalicylaldehyde, 2-hydroxy-1-naphthaldehyde and 2-aminoethanethiol have been synthesised by the reaction of methanolic solution of dioxouranium(VI) acetate dihydrate and the Schiff base. The Schiff bases behave as ONS tridentate donor dibasic ligands. The complexes are of the type UO2L · CH3OH, where LH2 = the tridentate, dibasic Schiff base. The complexes have been characterised on the basis of elemental analysis, infrared and electronic spectra, conductance, magnetic susceptibility and molecular weight measurements. The complexes are diamagnetic, monomers, and octahedral.  相似文献   

15.
Bibasic tetradentateSchiff bases having the donor system OH–NX–NX–OH have been shown to form UO2(NO3)2(SBH2) type of derivatives [SBH2 is the molecule of the bibasic tetradentateSchiff bases such as HOC6H4C(R) N(CH2) n NC(R)C6H4OH (where R=H or CH3 andn=2 or 3) and HOC(R)CHC(CH3)N(CH2) n NC(CH3)CH C(R)OH (where R=CH3 or C6H5 andn=2 or 3)]. The 11 stoichiometry of these complexes is shown by elemental analysis and conductometric titrations. The molar conductence values in nitrobenzene indicate the non-electrolytic behaviour and the magnetic susceptibility measurements by the Gouy method show these complexes to be diamagnetic.With 1 Figure  相似文献   

16.
Some binary and ternary novel complexes of dioxouranium(VI) with 8-hydroxy-7-quinolinecarboxaldehyde (OXH) have been prepared and characterized by elemental analyses, magnetic susceptibility measurements and spectral studies. Coordination effects on the vibrational spectra of the ligands have been investigated. The amine exchange reactions of coordinated Schiff bases in these complexes have been also studied, which reveal symmetrical tetradentate Schiff base complexes. Metal exchange reaction of dioxouranium(VI) complexes was obtained when reacted with tetradentate Schiff base complexes of Cu(II) with ZrCl(4)/UO(2)(CH(3)COO)(2) giving heterobinuclear complexes. Magnetic, electronic and IR spectral data suggest the configurations of distorted square planar ligand field copper(II) complexes. The ligands behave as bi-(O,O) and tetradentate (N(2),O(2)) donors. El-Sonbati equation has been used to evaluate the symmetric stretching frequency from which the F(U-O) and F(UO,UO)(-) were calculated. The bond distances of these complexes were also investigated.  相似文献   

17.
The species UO2(DMSO) 5 2+ is shown from1H NMR studies to be the predominant dioxouranium(VI) species existing in dilute anhydrous acetonedimethyl sulfoxide (DMSO) solutions, and this result is compared with data reported for the analogous water-acetone-dimethyl sulfoxide system. Complete line-shape analyses of exchange-modified1H NMR line shapes indicate that the mechanism for DMSO exchange on UO2(DMSO) 5 2+ is probably of theD orI D type. A typical set of rate parameters arek ex (260°K) =273±14 sec–1, H #=38.9±0.5 kJ-mole–1, and S #=–47.5±1.8 J-oK–1-mole–1 for a solution in which [UO2(DMSO)5 2+], [DMSO], and [d 6 acetone] are, respectively, 0.01155, 0.0875, and 13.00 moles-dm–3.  相似文献   

18.
The complexation equilibria between UO2(2+) and SO4(2-) ions have been studied at 25 degrees C in the ionic medium 3 M NaClO4 by potentiometry, by spectrophotometry and by solubility measurements of UO2(IO3)2. The potentiometric investigation was carried out with the Hg-Hg2SO4(s)-SO4(2-) half-cell and glass electrode in the sulfate concentration range 0.005 to 0.07 M. The optical absorbances in the UV-visible region and the solubility data cover the ligand concentration range 0.005 to 0.3 M. The data could be explained by assuming the complexes and equilibrium constants [Table: see text]. The constants in the infinite dilution reference state, log beta1o = 3.08 +/- 0.15 and log beta2o = 4.28 +/- 0.15, estimated by assuming the validity of the specific interaction theory, are practically coincident with literature data.  相似文献   

19.
20.
The formation of ternary UO2(2+)-(OH-)-SO4(2-) complexes has been studied at 25 degrees C in 3 M NaClO4 ionic medium by measurements with a glass electrode. The solutions had uranium concentrations between 0.3 and 30 mM, sulfate between 20 and 200 mM, and 1.66 < or = [SO4(2-)]/[U(VI)] < or = 300. The hydrogen ion concentration ranged from 10(-3) M to incipient precipitation of basic sulfates. This occurred, depending on the metal concentration, at [H+] between 10(-4) and 10(-5.3) M. In the interpretation of the data the stabilities of binary complexes were assumed from independent sources. The data could be explained with the mixed complexes and equilibria (beta(pqr)(3sigma) refers to pUO2(2+) + qH2O + rSO4(2-) <==> (UO2)p(OH)q(SO4)r(2p-q-2r) + qH+): logbeta222 = -2.94 +/- 0.03, logbeta341 = -9.82 +/- 0.06, logbeta211 = -0.30 +/- 0.09, logbeta212 = 1.09 +/- 0.09, logbeta351 = -15.04 +/- 0.09 and logbeta462 = -14.40 +/- 0.06. The fit could be improved by including UO2OH+ with logbeta110 = -5.1 +/- 0.1. The identity of the minor species remains, however, an open question.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号