首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Using the ab initio method, the vibrational and electronic spectra of binuclear molybdenum clusters which contain Mo2OnS4−n(n=0–4) core were investigated. The main absorption bands in the IR spectra of these clusters are assigned and compared with each other, especially for the case of the trans isomers. The electronic spectra were studied by performing the CIS calculations. The ground state and the first excited state of the clusters were discussed by using the natural bond orbital method. It is shown that the band corresponding to the longest wavelength can be assigned to three kinds of transition types. Two transitions, σ(Mo–Mo)→π*(Mo–Xt)(X=S,O) and σ(Mo–Mo)→σ*(Mo–Mo), can be seen in most cases.  相似文献   

2.
3.
Stop for NadA! A [4Fe-4S] enzyme, NadA, catalyzes the formation of quinolinic acid in de?novo nicotinamide adenine dinucleotide (NAD) biosynthesis. A structural analogue of an intermediate, 4,5-dithiohydroxyphthalic acid (DTHPA), has an in?vivo NAD biosynthesis inhibiting activity in E. coli. The inhibitory effect can be explained by the coordination of DTHPA thiolate groups to a unique Fe site of the NadA [4Fe-4S] cluster.  相似文献   

4.
5.
6.
Enzymatic oxidation of phenolic compounds is a widespread phenomenon in plants. It is responsible for the formation of many oligomers and polymers, which are generally described as the result of a combinatorial coupling of the different radicals formed through oxidation of the phenol group and delocalization of the radical. We focused our interest on several phenolic compounds that are present in plants and known to form, under enzymatic oxidation, oligomers with different type of linkages between monomers. To explain this diversity of inter-monomer linkages and their variation according to the experimental procedure used for the enzymatic oxidation, we report an alternative mechanistic pathway involving dismutation of the radicals, leading to the formation of carbocations which, thereafter, react with nucleophilic species present in the medium. This alternative pathway allows the understanding of peculiar linkages between monomeric units in the oligomer and offers new insights for understanding the formation of phenolic biopolymers in plants.  相似文献   

7.
The reaction of protein‐bound iron–sulfur (Fe‐S) clusters with nitric oxide (NO) plays key roles in NO‐mediated toxicity and signaling. Elucidation of the mechanism of the reaction of NO with DNA regulatory proteins that contain Fe‐S clusters has been hampered by a lack of information about the nature of the iron‐nitrosyl products formed. Herein, we report nuclear resonance vibrational spectroscopy (NRVS) and density functional theory (DFT) calculations that identify NO reaction products in WhiD and NsrR, regulatory proteins that use a [4Fe‐4S] cluster to sense NO. This work reveals that nitrosylation yields multiple products structurally related to Roussin's Red Ester (RRE, [Fe2(NO)4(Cys)2]) and Roussin's Black Salt (RBS, [Fe4(NO)7S3]. In the latter case, the absence of 32S/34S shifts in the Fe?S region of the NRVS spectra suggest that a new species, Roussin's Black Ester (RBE), may be formed, in which one or more of the sulfide ligands is replaced by Cys thiolates.  相似文献   

8.
We have accomplished highly enantioselective [2,3]‐Wittig rearrangements of functionalized allyl benzyl ethers in the presence of a chiral di‐tBu‐bis(oxazoline) ligand. In various oxygenated benzylic ethers, the reactions proceeded with excellent diastereo‐ and enantioselectivities, although the presence of a methoxy substituent at the ortho‐position on the benzyl group drastically decreased the enantioselectivity. Conversely, o‐ethyl and o‐phenyl substituents had no significant effect on the selectivity. We found that the C2‐substituent of the allylic moiety played an important role in producing high enantioselectivity. Highly enantioselective [2,3]‐Wittig rearrangement in the presence of catalytic amounts of the chiral ligands is also described.  相似文献   

9.
10.
A novel synthetic method combining chemo and enzymatic synthesis strategies was employed to prepare a vinyl acetate type monomer, 6‐(4‐methoxybiphenyl‐4′‐oxy)hexyl vinyl hexanedioate (VA‐LC). Homo‐ and copolymers of VA‐LC with maleic anhydride (MAn) were prepared by conventional free radical polymerization using 2,2′‐azobisisobutyronitrile (AIBN) and 1,1′‐azobis (cyclohexane carbonitrile) (AHCN) as an initiator at 95 and 60 °C, respectively. The thermal properties of the generated polymeric material were investigated by differential scanning calorimetry (DSC), and the optical texture was inspected by polarizing optical microscopy (POM). While the monomer VA‐LC does not exhibit liquid‐crystalline properties, poly(VA‐LC), and the alternating copolymer of VA‐LC with maleic anhydride both displayed such properties.

  相似文献   


11.
12.
13.
A series of unknown di- and tetrapropargylic sulfides and selenides have been prepared. In the presence of t-BuOK in dry THF these compounds underwent isomerization to the corresponding diallenes, followed by a tandem anionic cyclization and aromatization to 2-vinylthiophene or selenophene derivatives. Some mechanistic studies indicated competition between free radical and anionic cycloaromatization. The latter is influenced by the nature of the bridging heteroatom, substitution of the allenyl group and base concentration.  相似文献   

14.
[FeFe]‐hydrogenases are the best natural hydrogen‐producing enzymes but their biotechnological exploitation is hampered by their extreme oxygen sensitivity. The free energy profile for the chemical attachment of O2 to the enzyme active site was investigated by using a range‐separated density functional re‐parametrized to reproduce high‐level ab initio data. An activation free‐energy barrier of 13 kcal mol?1 was obtained for chemical bond formation between the di‐iron active site and O2, a value in good agreement with experimental inactivation rates. The oxygen binding can be viewed as an inner‐sphere electron‐transfer process that is strongly influenced by Coulombic interactions with the proximal cubane cluster and the protein environment. The implications of these results for future mutation studies with the aim of increasing the oxygen tolerance of this enzyme are discussed.  相似文献   

15.
The first colloidal nanoparticle synthesis of the copper selenophosphate Cu3PSe4, a promising new material for photovoltaics, is reported. Because the formation of binary copper selenide impurities seemed to form more readily, two approaches were developed to install phosphorus bonds directly: 1) the synthesis of molecular P4Se3 and subsequent reaction with a copper precursor, (P‐Se)+Cu, and 2) the synthesis of copper phosphide, Cu3P, nanoparticles and subsequent reaction with a selenium precursor, (Cu‐P)+Se. The isolation and purification of Cu3P nanoparticles and subsequent selenization yielded phase‐pure Cu3PSe4. Solvent effects and Se precursor reactivities were elucidated and were key to understanding the final reaction conditions.  相似文献   

16.
Radical polymerization of N‐methylacrylamide (NMAAm), N,N‐dimethylacrylamide (DMAAm), and N‐methyl‐N‐phenylacrylamide (MPhAAm) was investigated in toluene at low temperatures. Atactic, isotactic, and syndiotactic polymers were obtained by the polymerization of NMAAm, DMAAm, and MPhAAm, respectively, indicating that the stereospecificity of the radical polymerization of acrylamide derivatives depended on the N‐substituents of the monomer used. From the viewpoint of monomer structure, the origin of the stereospecificity of radical polymerization of NMAAm derivatives is discussed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6534–6539, 2009  相似文献   

17.
18.
The end groups of styrene–methyl methacrylate (St‐MMA) copolymers polymerized radically with 2,2′‐azobisisobutyronitrile (AIBN) as an initiator, which are difficult to characterize even by NMR, were investigated by pyrolysis–gas chromatography. On the resulting pyrograms, characteristic products that formed from the end‐group moiety due to AIBN, such as 2‐cyanopropane, 2‐cyanopropen, and various compounds consisting of an isobutyronitrile group and a monomer unit, were observed together with those from the main chain, such as St and MMA monomers and various dimeric and trimeric products. The relative abundance between the recombination and disproportionation termination reactions in the copolymerization process was estimated from the relative intensities between the characteristic peaks of the end group and those of the main chain. Thus, the estimated abundance for the termination reactions suggested that the polymerization process for this particular copolymer system terminated preferentially by recombination rather than by disproportionation. Furthermore, the relative abundance between the monomer units adjacent to the chain‐end AIBN residues was estimated on the basis of the peak intensities of the products consisting of an isobutyronitrile group and either monomer unit, which reflected the penultimate neighboring structure of the end group in the polymer chain. Thus, the observed results suggested that the isobutyronitrile radical formed by the dissociation of AIBN in the initiation reaction was predominantly adjoined by St monomer rather than by MMA monomer. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1880–1888, 2000  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号